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Explicit naming

let 𝑥 = 1 + 2 in print (𝑥 + 𝑥)⏟⎵⎵⎵⏟⎵⎵⎵⏟
scope of 𝑥

With explicit naming, we use explicit operations to
manipulate names:

bind 𝑥 to 1 + 2 in print (read 𝑥 + read 𝑥); free 𝑥

Names are first-class citizens:

bind 𝑥 to 4 in 𝑥 returns 𝑥, not 4
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Names as pointers

In explicit naming, names are like pointers

• bind 𝑥 to 7 allocates memory to hold the value 7
• read 𝑥 dereferences the pointer 𝑥
• free 𝑥 deallocates the memory pointed to by 𝑥

Important: The value bound to a name cannot change
(so names are like ‘immutable pointers’)

Explicit naming is a fragment of manual memory management



Examples

We track bindings using a heap, mapping names to values

The heap is updated during every computation step

heap expression

{} bind 𝑥 to 7 in print (read 𝑥); free 𝑥
⇝ {𝑥 ↦ 7} print (read 𝑥); free 𝑥
⇝ {𝑥 ↦ 7} print 7; free 𝑥 7 is printed
⇝ {𝑥 ↦ 7} free 𝑥
⇝ {}



Examples

What if we free 𝑥 before reading from it?

heap expression

{} bind 𝑥 to 7 in free 𝑥; print (read 𝑥)
⇝ {𝑥 ↦ 7} free 𝑥; print (read 𝑥)
⇝ {} print (read 𝑥) can’t continue!

Behaviour is very sensitive to order of evaluation

The heap is threaded through the computation, so the
semantics is non-compositional



How can we fix this?

Currently, our evaluator is a partial function of type

Expr→ Heap⇀ Heap × Value

We can write this as

Expr→ 𝑇 Value where 𝑇 = Heap⇀ Heap × (−)

Can we replace 𝑇 with a better (more compositional) monad?

𝑈 = Context⏟⎵⏟⎵⏟
like a fixed heap

⇀ (Heap⇀ Heap⏟⎵⎵⎵⏟⎵⎵⎵⏟
effect on the heap

) × (−)

Crucially: The context isn’t modified by heap effects, and
effects are composed using their monoid structure.

This semantics is equivalent to the stateful semantics!
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Examples

effΓ(read 𝑥)(𝐻) = {
𝐻 if 𝑥 ∈ dom𝐻
↑ otherwise

effΓ(free 𝑥)(𝐻) = {
𝐻′ if 𝐻 = 𝐻′, 𝑥 ↦ 𝑣
↑ otherwise

effΓ(𝑒1; 𝑒2) = effΓ(𝑒2) ∘ effΓ(𝑒1)

The same context Γ is used for both 𝑒1 and 𝑒2



Conclusions

• In explicit naming, we manipulate names manually using
explicit operations

• Explicit naming can be viewed as a fragment of manual
memory management

• The evaluator can be thought of as a monadic function
Expr→ 𝑇 Value

• By replacing 𝑇 with a ‘better’ monad 𝑈 we reduce
dependence on state

• Paper coming soon!

Thank you!



Equivalence theorem

𝐻 ∶ 𝑒 ⇓ 𝐻′ ∶ 𝑣 ⟺
(∃𝑤 𝑓, 𝑤 = 𝑣 ∧ 𝑓(𝐻) = 𝐻′ ∧ tr(𝐻) ⊢ 𝑒 ⇓ 𝑓 ∶ 𝑤)



𝐻 ∶ 𝑥 ⇓ 𝐻 ∶ 𝑥
H-VAR

𝐻 ∶ 𝜆𝑥. 𝑒 ⇓ 𝐻 ∶ 𝜆𝑥. 𝑒
H-LAM

𝐻1 ∶ 𝑒1 ⇓ 𝐻2 ∶ 𝜆𝑥. 𝑒 𝐻2 ∶ 𝑒2 ⇓ 𝐻3 ∶ 𝑣
(𝐻3, 𝑥 ↦ 𝑣) ∶ 𝑒 ⇓ 𝐻4 ∶ 𝑣′

𝐻1 ∶ 𝑒1 𝑒2 ⇓ 𝐻4 ∶ 𝑣′
H-APP

𝐻1 ∶ 𝑒 ⇓ (𝐻2, 𝑥 ↦ 𝑣) ∶ 𝑥
𝐻1 ∶ ∗𝑒 ⇓ (𝐻2, 𝑥 ↦ 𝑣) ∶ 𝑣

H-READ

𝐻1 ∶ 𝑒1 ⇓ 𝐻2 ∶ 𝑣 𝐻2 ∶ 𝑒2 ⇓ (𝐻3, 𝑥 ↦ 𝑣′) ∶ 𝑥
𝐻1 ∶ 𝑒1; free 𝑒2 ⇓ 𝐻3 ∶ 𝑣

H-FREE



Γ(𝑥) = 𝑤
Γ ⊢ 𝑥 ⇓ id ∶ (𝑥 ↦ 𝑤)

E-VAR
𝑥 ∉ domΓ

Γ ⊢ 𝜆𝑥. 𝑒 ⇓ id ∶ 𝜆Γ𝑥. 𝑒
E-LAM

Γ ⊢ 𝑒1 ⇓ 𝑓1 ∶ 𝜆Γ
′𝑥. 𝑒 Γ ⊢ 𝑒2 ⇓ 𝑓2 ∶ 𝑤

(Γ′, 𝑥 ↦ 𝑤) ⊢ 𝑒 ⇓ 𝑓3 ∶ 𝑤′

Γ ⊢ 𝑒1 𝑒2 ⇓ 𝑓3 ∘ 𝑓2 ∘ 𝑓1 ∶ 𝑤′
E-APP

Γ ⊢ 𝑒 ⇓ 𝑓 ∶ (𝑥 ↦ 𝑤)
Γ ⊢ ∗𝑒 ⇓ read 𝑥 ∘ 𝑓 ∶ 𝑤

E-READ

Γ ⊢ 𝑒1 ⇓ 𝑓1 ∶ 𝑤 Γ ⊢ 𝑒2 ⇓ 𝑓2 ∶ (𝑥 ↦ 𝑤′)
Γ ⊢ 𝑒1; free 𝑒2 ⇓ free 𝑥 ∘ 𝑓2 ∘ 𝑓1 ∶ 𝑤

E-FREE


