
Compositional Memory Management in the
𝜆-calculus
Or: A Compositional Semantics for Explicit Naming

Sky Wilshaw, Graham Hutton
School of Computer Science, University of Nottingham

12th June 2025



Explicit naming

let 𝑥 = 1 + 2 in print (𝑥 + 𝑥)⏟⎵⎵⎵⏟⎵⎵⎵⏟
scope of 𝑥

With explicit naming, we use explicit operations to
manipulate names:

bind 𝑥 to 1 + 2 in print (read 𝑥 + read 𝑥); free 𝑥

Names are first-class citizens:

bind 𝑥 to 4 in 𝑥 returns 𝑥, not 4



Explicit naming

let 𝑥 = 1 + 2 in print (𝑥 + 𝑥)⏟⎵⎵⎵⏟⎵⎵⎵⏟
scope of 𝑥

With explicit naming, we use explicit operations to
manipulate names:

bind 𝑥 to 1 + 2 in print (read 𝑥 + read 𝑥); free 𝑥

Names are first-class citizens:

bind 𝑥 to 4 in 𝑥 returns 𝑥, not 4



Names as pointers

In explicit naming, names are like pointers

• bind 𝑥 to 7 allocates memory to hold the value 7
• read 𝑥 dereferences the pointer 𝑥
• free 𝑥 deallocates the memory pointed to by 𝑥

Important: The value bound to a name cannot change
(so names are like ‘immutable pointers’)

Explicit naming is a fragment of manual memory management



Examples

We track bindings using a heap, mapping names to values

The heap is updated during every computation step

heap expression

{} bind 𝑥 to 7 in print (read 𝑥); free 𝑥
⇝ {𝑥 ↦ 7} print (read 𝑥); free 𝑥
⇝ {𝑥 ↦ 7} print 7; free 𝑥 7 is printed
⇝ {𝑥 ↦ 7} free 𝑥
⇝ {}



Examples

What if we free 𝑥 before reading from it?

heap expression

{} bind 𝑥 to 7 in free 𝑥; print (read 𝑥)
⇝ {𝑥 ↦ 7} free 𝑥; print (read 𝑥)
⇝ {} print (read 𝑥) can’t continue!

Behaviour is very sensitive to order of evaluation

The heap is threaded through the computation, so the
semantics is non-compositional



How can we fix this?

Currently, our evaluator is a partial function of type

Expr→ Heap⇀ Heap × Value

We can write this as

Expr→ 𝑇 Value where 𝑇 = Heap⇀ Heap × (−)

Can we replace 𝑇 with a better (more compositional) monad?

𝑈 = Context⏟⎵⏟⎵⏟
like a fixed heap

⇀ (Heap⇀ Heap⏟⎵⎵⎵⏟⎵⎵⎵⏟
effect on the heap

) × (−)

Crucially: The context isn’t modified by heap effects, and
effects are composed using their monoid structure.

This semantics is equivalent to the stateful semantics!



How can we fix this?

Currently, our evaluator is a partial function of type

Expr→ Heap⇀ Heap × Value

We can write this as

Expr→ 𝑇 Value where 𝑇 = Heap⇀ Heap × (−)

Can we replace 𝑇 with a better (more compositional) monad?

𝑈 = Context⏟⎵⏟⎵⏟
like a fixed heap

⇀ (Heap⇀ Heap⏟⎵⎵⎵⏟⎵⎵⎵⏟
effect on the heap

) × (−)

Crucially: The context isn’t modified by heap effects, and
effects are composed using their monoid structure.

This semantics is equivalent to the stateful semantics!



Examples

effΓ(read 𝑥)(𝐻) = {
𝐻 if 𝑥 ∈ dom𝐻
↑ otherwise

effΓ(free 𝑥)(𝐻) = {
𝐻′ if 𝐻 = 𝐻′, 𝑥 ↦ 𝑣
↑ otherwise

effΓ(𝑒1; 𝑒2) = effΓ(𝑒2) ∘ effΓ(𝑒1)

The same context Γ is used for both 𝑒1 and 𝑒2



Conclusions

• In explicit naming, we manipulate names manually using
explicit operations

• Explicit naming can be viewed as a fragment of manual
memory management

• The evaluator can be thought of as a monadic function
Expr→ 𝑇 Value

• By replacing 𝑇 with a ‘better’ monad 𝑈 we reduce
dependence on state

• Paper coming soon!

Thank you!



Equivalence theorem

𝐻 ∶ 𝑒 ⇓ 𝐻′ ∶ 𝑣 ⟺
(∃𝑤 𝑓, 𝑤 = 𝑣 ∧ 𝑓(𝐻) = 𝐻′ ∧ tr(𝐻) ⊢ 𝑒 ⇓ 𝑓 ∶ 𝑤)



𝐻 ∶ 𝑥 ⇓ 𝐻 ∶ 𝑥
H-VAR

𝐻 ∶ 𝜆𝑥. 𝑒 ⇓ 𝐻 ∶ 𝜆𝑥. 𝑒
H-LAM

𝐻1 ∶ 𝑒1 ⇓ 𝐻2 ∶ 𝜆𝑥. 𝑒 𝐻2 ∶ 𝑒2 ⇓ 𝐻3 ∶ 𝑣
(𝐻3, 𝑥 ↦ 𝑣) ∶ 𝑒 ⇓ 𝐻4 ∶ 𝑣′

𝐻1 ∶ 𝑒1 𝑒2 ⇓ 𝐻4 ∶ 𝑣′
H-APP

𝐻1 ∶ 𝑒 ⇓ (𝐻2, 𝑥 ↦ 𝑣) ∶ 𝑥
𝐻1 ∶ ∗𝑒 ⇓ (𝐻2, 𝑥 ↦ 𝑣) ∶ 𝑣

H-READ

𝐻1 ∶ 𝑒1 ⇓ 𝐻2 ∶ 𝑣 𝐻2 ∶ 𝑒2 ⇓ (𝐻3, 𝑥 ↦ 𝑣′) ∶ 𝑥
𝐻1 ∶ 𝑒1; free 𝑒2 ⇓ 𝐻3 ∶ 𝑣

H-FREE



Γ(𝑥) = 𝑤
Γ ⊢ 𝑥 ⇓ id ∶ (𝑥 ↦ 𝑤)

E-VAR
𝑥 ∉ domΓ

Γ ⊢ 𝜆𝑥. 𝑒 ⇓ id ∶ 𝜆Γ𝑥. 𝑒
E-LAM

Γ ⊢ 𝑒1 ⇓ 𝑓1 ∶ 𝜆Γ
′𝑥. 𝑒 Γ ⊢ 𝑒2 ⇓ 𝑓2 ∶ 𝑤

(Γ′, 𝑥 ↦ 𝑤) ⊢ 𝑒 ⇓ 𝑓3 ∶ 𝑤′

Γ ⊢ 𝑒1 𝑒2 ⇓ 𝑓3 ∘ 𝑓2 ∘ 𝑓1 ∶ 𝑤′
E-APP

Γ ⊢ 𝑒 ⇓ 𝑓 ∶ (𝑥 ↦ 𝑤)
Γ ⊢ ∗𝑒 ⇓ read 𝑥 ∘ 𝑓 ∶ 𝑤

E-READ

Γ ⊢ 𝑒1 ⇓ 𝑓1 ∶ 𝑤 Γ ⊢ 𝑒2 ⇓ 𝑓2 ∶ (𝑥 ↦ 𝑤′)
Γ ⊢ 𝑒1; free 𝑒2 ⇓ free 𝑥 ∘ 𝑓2 ∘ 𝑓1 ∶ 𝑤

E-FREE


