
A Fully Dependent Assembly Language

Yulong Huang & Jeremy Yallop

University of Cambridge, UK

TYPES 2025, University of Strathclyde, Glasgow

June 2025

Motivation

Dependent types are immediately thrown away after
type checking!

Motivation

Dependent types are immediately thrown away after
type checking, but there are good reasons for
preserving the types:

Motivation

Dependent types are immediately thrown away after
type checking, but there are good reasons for
preserving the types:

- To guide compiler transformaions

- To optimize with more information

Tarditi et al. (1996): TIL: A type-directed
optimizing compiler for ML

Motivation

Dependent types are immediately thrown away after
type checking, but there are good reasons for
preserving the types:

- To guide compiler transformaions

- To optimize with more information

- To verify executables through type-checking

Morrisett et al. (1999): From system F to
typed assembly language

Motivation

Dependent types are immediately thrown away after
type checking, but there are good reasons for
preserving the types:

- To guide compiler transformaions

- To optimize with more information

- To verify executables through type-checking

...and now is the time!

Ritter (1993): Categorical abstract syntax for
higher-order typed lambda calculi

Dependent assembly how?

One should specify:

- how types depend on instructions

- the equational theory of instructions

- what is a dependent stack...

Dependent assembly how?

One should specify:

- how types depend on instructions

- the equational theory of instructions

- what is a dependent stack...

One should separate high-level dependent types and low-level assembly code.

Dependent assembly: Syntax

Assembly: instruction set for a stack machine

 I ::= LIT c | POP | VAR x | CLO n lab | APP | I ; I' | ...

Term calculus: fully dependently typed calculus for specifying types of assembly code

 e, A ::= x | e e' | lab {e1, ..., en} | Πx:A.B | U | ...

Term calculus: Defunctionalized CC

The term calculus is similar to calculus of constructions (CC) except:

- there is no lambda abstraction

- context contains a fixed set of function labels

- labels form closures with lists of terms

The defunctionalized CC is consistent and the function labels can be generated from a
source program in CC.

Γ ⊢ e1, ..., en : Δ lab(∆, x:A ↦ e : B) ∈ Γ

Γ ⊢ lab{e1, ..., en } : (Πx:A.B)[e1, ..., en / ∆]

Huang and Yallop (2023): Defunctionalization with dependent types

Assembly: SECD machine

Runtime values are closed values in the term calculus (i.e. closures, types, base values).

 v ::= lab {v1, ..., vn} | A | b | ...

A machine state <I, Env, St, Fr>P is made of:

- An instruction sequence (control) I

- A runtime environment of values Env : List v

- A stack of values St : List v

- A stack of call frames (dump) Fr : List (I × Env × St)

- A list of procedures P : Label → I

Machine step: < I, Env, St, Fr>P ⟶ < I', Env', St', Fr'>P

Typing the assembly (judgement)

An abstract stack σ is a list of terms in the defunctionalized CC.

The typing judgement

says that instruction I transforms stack σ to stack σ', modelling the computation like
an abstract interpreter.

Γ ⊢ I : σ → σ'

Typing the assembly (basic operations)

 x : A ∈ Γ
Γ ⊢ VAR x : σ → σ ∷ x

 Γ ⊢ POP : σ, t → σ

< VAR x ; I, Env, St , Fr>P ⟶
< I , Env, St ∷ v, Fr>P

 where v = Env(x)

< POP ; I, Env, St ∷ v, Fr>P ⟶
< I , Env, St , Fr>P

Typing the assembly (closure)

Γ ⊢ e1, ..., en : Δ lab(∆, x:A ↦ e : B) ∈ Γ
Γ ⊢ CLO n lab : σ ∷ e1 ∷ ... ∷ en → σ ∷ lab{e1, ..., en}

< CLO n lab ; I, Env, St ∷ v1 ∷ ... ∷ vn , Fr>P ⟶
< I , Env, St ∷ lab{v1, ..., vn} , Fr>P

Clo n lab forms a closure with the top n items on the stack.

Typing the assembly (application)

Γ ⊢ e : Πx:A.B Γ ⊢ e' : A
Γ ⊢ APP : σ ∷ e ∷ e' → σ ∷ e e'

< APP ; I, Env , St ∷ lab{Env'} ∷ v, Fr>P ⟶
< P(lab) , Env' ∷ v, [] , Fr ∷ (I, Env, St) >P

Application: loads instructions according to lab, fills in the environment, saves current
(I, Env, St) on a new call frame.

Compilation

Now, we can define a simple compilation function that generates dependent
assembly code from defunctionalized CC code:

cp x = VAR x

cp Πx:A.B = LIT Πx:A.B

cp U = LIT U

cp lab {e1, ..., en} = cp e1 ; ... ; cp en ; CLO n lab

cp e e' = cp e ; cp e' ; APP

Correctness of compilation

Type preservation: Γ ⊢ e : A ⟹ Γ ⊢ I : σ → σ ∷ e for all σ.

Correctness (WIP): For all base types A, if · ⊢ e : A and e ↝* v , then

 < cp e, [], [], []>P ⟶ < [], [], [] ∷ v, []>P

Typing the machine states

Runtime values can be typed since they are closed values in the term calculus.

 ⊢ v : A

Other components of the machine state are also typable:

 ⊢ Env : Γ env implements a context of type Γ

 ⊢Env St : σ st implements σ w.r.t. well-formed Env

 (judgements omitted for frames and procedures)

Above combine to a well-formedness judgement for machine states:
 ⊢ < I, Env, St, Fr>P

Type safety

Progress:

 If ⊢ < I, Env, St, Fr>P then < I, Env, St, Fr>P ⟶ < I', Env', St', Fr'>P

Preservation:

 If ⊢ < I, Env, St, Fr>P and < I, Env, St, Fr>P ⟶ < I', Env', St', Fr'>P

 then ⊢ < I', Env', St', Fr'>P

Future directions

- Termination

- Agda formalization of meta-theory

- Erasure of runtime types

- Certified optimization

- Datatypes and runtime representations

- Quantitative types for better erasure and linearity

Thank you!

…and questions?

Speaker email: yh419@cam.ac.uk

	Slide 1: A Fully Dependent Assembly Language
	Slide 2: Motivation
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Dependent assembly how?
	Slide 8: Dependent assembly how?
	Slide 9: Dependent assembly: Syntax
	Slide 10: Term calculus: Defunctionalized CC
	Slide 11: Assembly: SECD machine
	Slide 12: Typing the assembly (judgement)
	Slide 13: Typing the assembly (basic operations)
	Slide 14: Typing the assembly (closure)
	Slide 15: Typing the assembly (application)
	Slide 16: Compilation
	Slide 17: Correctness of compilation
	Slide 18: Typing the machine states
	Slide 19: Type safety
	Slide 20: Future directions
	Slide 21: Thank you!

