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Motivation

Dependent types are immediately thrown away after 
type checking, but there are good reasons for 
preserving the types:

- To guide compiler transformaions

- To optimize with more information

- To verify executables through type-checking 

...and now is the time!

Ritter (1993): Categorical abstract syntax for 
higher-order typed lambda calculi
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Dependent assembly how?

One should specify:

- how types depend on instructions

- the equational theory of instructions

- what is a dependent stack...

One should separate high-level dependent types and low-level assembly code.



Dependent assembly: Syntax

Assembly: instruction set for a stack machine

 
      I  ::= LIT c | POP | VAR x | CLO n lab | APP | I ; I' | ...

Term calculus: fully dependently typed calculus for specifying types of assembly code

 

  e, A  ::= x | e e' | lab {e1, ..., en} | Πx:A.B | U | ...



Term calculus: Defunctionalized CC

The term calculus is similar to calculus of constructions (CC) except:

- there is no lambda abstraction

- context contains a fixed set of function labels 

- labels form closures with lists of terms

The defunctionalized CC is consistent and the function labels can be generated from a 
source program in CC.

Γ ⊢ e1, ..., en : Δ   lab(∆, x:A ↦ e : B) ∈ Γ

Γ ⊢ lab{e1, ..., en } : (Πx:A.B)[e1, ..., en / ∆]

Huang and Yallop (2023): Defunctionalization with dependent types



Assembly: SECD machine

Runtime values are closed values in the term calculus (i.e. closures, types, base values).

 v  ::= lab {v1, ..., vn} | A | b | ...

A machine state <I, Env, St, Fr>P  is made of:

- An instruction sequence (control)      I 

- A runtime environment of values  Env  :  List v

- A stack of values    St   :  List v

- A stack of call frames (dump)  Fr   :  List (I × Env × St)

- A list of procedures   P    :  Label → I 

Machine step: < I, Env, St, Fr>P   ⟶ < I', Env', St', Fr'>P



Typing the assembly (judgement)

An abstract stack σ is a list of terms in the defunctionalized CC.

The typing judgement 

 

says that instruction I transforms stack σ to stack σ', modelling the computation like 
an abstract interpreter.

Γ ⊢ I : σ → σ'



Typing the assembly (basic operations)

 x : A ∈ Γ 
Γ ⊢ VAR x : σ → σ ∷ x

 Γ ⊢ POP : σ, t → σ

< VAR x ; I, Env, St     , Fr>P ⟶
< I         , Env, St ∷ v, Fr>P

       where v = Env(x)

< POP ; I,  Env, St ∷ v, Fr>P ⟶
< I       ,  Env, St     , Fr>P



Typing the assembly (closure)

Γ ⊢ e1, ..., en : Δ         lab(∆, x:A ↦ e : B) ∈ Γ
Γ ⊢ CLO n lab : σ ∷ e1 ∷ ... ∷ en → σ ∷ lab{e1, ..., en} 

< CLO n lab ; I, Env, St ∷ v1 ∷ ... ∷ vn , Fr>P ⟶
< I              , Env, St ∷ lab{v1, ..., vn} , Fr>P

Clo n lab forms a closure with the top n items on the stack.



Typing the assembly (application)

Γ ⊢ e : Πx:A.B  Γ ⊢ e' : A
Γ ⊢ APP : σ ∷ e ∷ e'   → σ ∷ e e'

< APP ; I, Env      , St ∷ lab{Env'} ∷ v, Fr>P ⟶
< P(lab) , Env' ∷ v, []                     , Fr ∷ (I, Env, St) >P

Application: loads instructions according to lab, fills in the environment, saves current 
(I, Env, St) on a new call frame.



Compilation

Now, we can define a simple compilation function that generates dependent 
assembly code from defunctionalized CC code:

cp  x   =  VAR x  

cp  Πx:A.B  =  LIT Πx:A.B

cp  U   =  LIT U

cp  lab {e1, ..., en} =  cp e1 ; ... ; cp en ; CLO n lab 

cp  e e'  =  cp e ; cp e' ; APP



Correctness of compilation

Type preservation: Γ ⊢ e : A  ⟹ Γ ⊢ I : σ → σ ∷ e for all σ. 

Correctness (WIP): For all base types A, if · ⊢ e : A and e ↝* v , then

 < cp e, [], [], []>P   ⟶ < [], [], [] ∷ v, []>P



Typing the machine states

Runtime values can be typed since they are closed values in the term calculus.

 ⊢ v : A

Other components of the machine state are also typable:

 ⊢ Env : Γ  env implements a context of type Γ

 ⊢Env St : σ  st implements σ w.r.t. well-formed Env

 (judgements omitted for frames and procedures)

Above combine to a well-formedness judgement for machine states:
 ⊢ < I, Env, St, Fr>P 



Type safety

Progress: 

 If  ⊢ < I, Env, St, Fr>P  then < I, Env, St, Fr>P   ⟶ < I', Env', St', Fr'>P

Preservation: 

 If  ⊢ < I, Env, St, Fr>P  and < I, Env, St, Fr>P   ⟶ < I', Env', St', Fr'>P

 then ⊢ < I', Env', St', Fr'>P 



Future directions

- Termination

- Agda formalization of meta-theory

- Erasure of runtime types

- Certified optimization

- Datatypes and runtime representations

- Quantitative types for better erasure and linearity



Thank you!

…and questions?

Speaker email: yh419@cam.ac.uk
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