Matching (Co)patterns with Cyclic Proofs

Lide Grotenhuis and <u>Daniël Otten</u> University of Amsterdam

Cyclic Proof 00 Type Theory 000000 Conservativity 0000 Conclusion 00

Teaser

Agda accepts the following functions that Rocq rejects:

$$\begin{split} & \mathsf{swap-add}:\mathbb{N}\to\mathbb{N}\to\mathbb{N},\\ & \mathsf{swap-add}\,m\,n:=\mathsf{case}\,m \begin{cases} 0\mapsto n,\\ \mathsf{suc}\,m'\mapsto\mathsf{suc}\,(\mathsf{swap-add}\,n\,m');\\ & \mathsf{g}:\mathbb{N}\to\mathbb{N}\to\mathbb{N},\\ & \mathsf{g}\,m\,n:=\mathsf{case}\,m \end{cases} \begin{cases} 0\mapsto 0,\\ & \mathsf{suc}\,m'\mapsto\mathsf{case}\,n \end{cases} \begin{cases} 0\mapsto\mathsf{suc}\,0,\\ & \mathsf{suc}\,n'\mapsto\mathsf{g}\,m'\,m'+\mathsf{g}\,n'\,n'. \end{split}$$

Why do they terminate? Can we define them with induction?

Cyclic Proo 00 Type Theory 000000 Conservativity 0000 Conclusion 00

Overview

We connect:

cyclic proof theory and recursive functions with (co)pattern matching.

Cyclic proof systems replace (co)induction rules with circular reasoning.

Example. Consider arithmetic with axioms:

 $\overline{x+0=x}^{+}_{0}, \qquad \overline{x+\operatorname{suc} y=\operatorname{suc} (x+y)}^{+}_{\operatorname{suc}}.$

with a cycle between the blue nodes.

Cyclic Proot

Type Theory 000000 Conservativity 0000 Conclusion 00

Overview

We connect:

cyclic proof theory and recursive functions with (co)pattern matching.

Cyclic proof systems replace (co)induction rules with circular reasoning.

Good for proof search:

- (co)induction: guess a (co)induction hypothesis.
- cycles: generate until our current goal matches a previous goal; check for progress.

The type theory implemented by proof assistants can be seen as cyclic:

Cyclic Proof	Recursive Function
Fixpoint Formula	(Co)inductive Type
Cycle	Recursive Function Call
Soundness Conditions	Termination Checking

Cyclic Proof 00 Type Theory 000000 Conservativity 0000 Conclusion 00

Two main goals:

- Explain how the Curry-Howard correspondence can be extended to cyclic proofs and recursive functions.
- Extend conservativity results that show that pattern matching can be reduced to induction rules (with¹ and without² K).

¹Goguen, McBride, McKinna 2006 ²Cockx, Devriese, Piessens 2014

Soundness Condition

For a cyclic proof system we specify when cycles are allowed:

- we want to be restrictive enough to be sound;
- we want to be admissive enough to be complete, and easy to use.
 This is called the soundness condition.

The global soundness condition is: for every infinite path we can eventually trace an object that makes progress infinitely often.

Example. For arithmetic:

- objects: variables,
- progress: passing through a case distinction.

In general, checking the global soundness condition is PSPACE-complete.

Type Theory 000000 Conservativity 0000 Conclusion 00

Two Styles

Cyclic proof systems generally fall into two styles:

• systems where the sort is (co)inductive:

natural numbers, ordinals, streams, ...

• systems where the formulas contain fixpoints:

 $\begin{array}{rl} R^* \text{ is the smallest relation such that} \\ xR^*y & \leftrightarrow & x = y \lor \exists x'(xRx' \land x'R^*y), \\ & \vdots \end{array}$

We want a system that generalises both styles.

Dependent type theory is a natural candidate:

types can be seen as both sorts and formulas.

Cyclic Proo 00 Type Theory ●00000 Conclusion 00

Termination Checking

What are cyclic proofs in type theory? General idea:

- A sequent $\Gamma \vdash a : A$ gives a function sending Γ to a : A.
- A cycle uses the function inside the function (recursive call).

Proof assistants (Agda, Rocq, ...) implement recursive calls.

To ensure termination, we check:

- Roqr: structural recursion. This is conservative over induction (with³ and without⁴ K).
- Agda: size-change termination. Conservativity is not known.

These conditions are sufficient but not necessary (halting problem).

³Goguen, McBride, McKinna 2006

⁴Cockx, Devriese, Piessens 2014

Cyclic Proc 00 Type Theory 000000 Conservativity 0000 Conclusion 00

Structural Recursion

One input is structurally smaller in every recursive call:

Example. The Fibonacci function:

$$\begin{split} & \mathsf{fib}:\mathbb{N}\to\mathbb{N},\\ & \mathsf{fib}\,n:=\mathsf{case}\,n \begin{cases} 0\mapsto 0,\\ & \mathsf{suc}\,n'\mapsto\mathsf{case}\,n' \\ & \mathsf{suc}\,n''\mapsto\mathsf{fib}\,n''+\mathsf{fib}\,n'. \end{split}$$

Cyclic Proo 00 Type Theory 000000 Conservativity 0000 Conclusion 00

Size-change termination

Every infinite sequence of calls eventually has a path that decreases infinitely often:

Cyclic Proof 00 Type Theory 000€00 Conservativity 0000 Conclusion 00

Size-change Termination

Every infinite sequence of calls eventually has a path that decreases infinitely often:

Cyclic Proof 00 Type Theory 0000●0 Conservativity 0000 Conclusion 00

Size-change Termination

Every infinite sequence of calls eventually has a path that decreases infinitely often.

This corresponds to the PSPACE-complete global soundness condition.

In cyclic proof theory, there are results showing that in some cases, this condition is conservative over induction:

- For first-order μ -calculus with ordinal approximations.⁵
- For natural numbers.⁶

We hope to prove a similar result for type theory.

⁵Sprenger, Dam 2003 ⁶Leigh, Wehr 2023

Cyclic Proo 00 Type Theory 00000● Conservativity 0000 Conclusion 00

Unification

For inductive families such as =-types, pattern matching uses unification.

Example. With normal unification, axiom K is provable:

$$\begin{split} K: (C: a = a \to \mathsf{Type}) \to C \operatorname{refl} \to (\alpha: a = a) \to C \alpha, \\ KCc \, \alpha \coloneqq \mathsf{case} \, \alpha \, \{\mathsf{refl} \mapsto c. \end{split}$$

Without K we have to restrict unification.

Cyclic Proo 00 Type Theory 000000 Conservativity •000 Conclusion 00

Conservativity

We are trying to combine ideas:

- Type theory: how to deal with unification and axiom K.
- Cyclic proof theory: how to deal with the global soundness condition.

The main idea is that we unfold the definitions some more.

Cyclic Proc 00 Type Theory 000000 Conservativity

Conclusion 00

Unfold the Tree

Example.

Cyclic Proo 00 Type Theory 000000 Conservativity 00●0 Conclusion 00

Unfold the Tree

Cyclic Proot

Type Theory 000000 Conservativity

Conclusion 00

Algorithm

We have an algorithm to determine how much to unfold:

- Start unfolding with annotations to track inputs. The annotations are based on the Safra construction, which makes nondeterministic ω-automata deterministic.
- If annotations start repeating, then we can stop.
- Such an annotated function corresponds to a reset proof, where we have an equivalent local soundness condition.
- The annotations give us an idea of the order in which to apply induction, and the local condition ensures structurally smaller input.
- By following the annotations, we add induction hypotheses.
- We replace recursive calls with appeals to induction hypotheses.

Cyclic Proo 00 Type Theory 000000 Conservativity 0000 Conclusion • O

Conclusion

To summarize:

- The Curry-Howard correspondence extends to recursive functions and cyclic proofs.
- Cyclic proof theory can be useful for type theory.
- Agda admits more functions than Rocr. Conservativity is only known for Rocr, we are trying to prove it for Agda.

Our approach is a bit more general than we have seen here: mix of arbitrary inductive families and mutually recursive functions.

In future work it would be interesting to look at copattern matching.

Cyclic Proof 00 Type Theory 000000 Conservativity 0000 Conclusion

Literature

Abel, Cocqx 2020 - Elaborating Dependent Copattern Matching Abel, Pientka, Thibodeau, Setzer 2013 - Copatterns: Programming Infinite Structures by Observations Abel, Pientka 2016 - Well-founded Recursion with Copatterns and Sized Types Afshari, Leigh 2027 - Cut-free Completeness for Modal Mu-Calculus Cockx 2017 - Dependent Pattern Matching and Proof-relevant Unification Cockx, Devriese, Piessens 2014 - Pattern Matching Without K Cockx, Devriese 2016 - Eliminating Dependent Pattern Matching Without K Goguen, McBride, McKinna 2006 - Eliminating Dependent Pattern Matching McBride, Goguen, McKinna 2004 - A Few Constructions on Constructors Leigh, Wehr 2023 - Unravelling Cyclic First-Order Arithmetic Sprenger, Dam 2003 - On the Structure of Inductive Reasoning, Circular and Tree-shaped Proofs in the mu-Calculus Thibodeau 2020 - An Intensional Type Theory of Coinduction using Copatterns Wehr 2023 - Representation Matters in Cyclic Proof Theory