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Teaser

Agda accepts the following functions that Rocq rejects:

swap-add ∶ ℕ → ℕ → ℕ,
swap-add 𝑚 𝑛 ≔ case 𝑚 { 0 ↦ 𝑛,

suc 𝑚′ ↦ suc (swap-add 𝑛 𝑚′);

g ∶ ℕ → ℕ → ℕ,
g 𝑚 𝑛 ≔ case 𝑚 { 0 ↦ 0,

suc 𝑚′ ↦ case 𝑛 { 0 ↦ suc 0,
suc 𝑛′ ↦ g 𝑚′ 𝑚′ + g 𝑛′ 𝑛′.

Why do they terminate? Can we define them with induction?
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Overview

We connect:

cyclic proof theory and recursive functions with (co)pattern matching.

Cyclic proof systems replace (co)induction rules with circular reasoning.

Example. Consider arithmetic with axioms:
+0,

𝑥 + 0 = 𝑥
+suc.𝑥 + suc 𝑦 = suc (𝑥 + 𝑦)

We have a cyclic proof:

+00 + 0 = 0

+suc0 + suc 𝑥′ = suc (0 + 𝑥′)
0 + 𝑥′ = 𝑥′

suc (0 + 𝑥′) = suc 𝑥′

0 + suc 𝑥′ = suc 𝑥′
case𝑥,

0 + 𝑥 = 𝑥

with a cycle between the blue nodes.
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Overview

We connect:

cyclic proof theory and recursive functions with (co)pattern matching.

Cyclic proof systems replace (co)induction rules with circular reasoning.

Good for proof search:
• (co)induction: guess a (co)induction hypothesis.
• cycles: generate until our current goal matches a previous goal;

check for progress.

The type theory implemented by proof assistants can be seen as cyclic:

Cyclic Proof Recursive Function
Fixpoint Formula (Co)inductive Type

Cycle Recursive Function Call
Soundness Conditions Termination Checking
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Goals

Two main goals:
• Explain how the Curry-Howard correspondence can be extended to

cyclic proofs and recursive functions.
• Extend conservativity results that show that pattern matching can

be reduced to induction rules (with1 and without2 K).

1Goguen, McBride, McKinna 2006
2Cockx, Devriese, Piessens 2014
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Soundness Condition

For a cyclic proof system we specify when cycles are allowed:
• we want to be restrictive enough to be sound;
• we want to be admissive enough to be complete, and easy to use.

This is called the soundness condition.

The global soundness condition is: for every infinite path we can
eventually trace an object that makes progress infinitely often.

Example. For arithmetic:
• objects: variables,
• progress: passing through a case distinction.

In general, checking the global soundness condition is PSPACE-complete.
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Two Styles

Cyclic proof systems generally fall into two styles:
• systems where the sort is (co)inductive:

natural numbers, ordinals, streams, ...

• systems where the formulas contain fixpoints:

𝑅∗ is the smallest relation such that
𝑥𝑅∗𝑦 ↔ 𝑥 = 𝑦 ∨ ∃𝑥′(𝑥𝑅𝑥′ ∧ 𝑥′𝑅∗𝑦),

⋮

We want a system that generalises both styles.

Dependent type theory is a natural candidate:
• types can be seen as both sorts and formulas.
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Termination Checking

What are cyclic proofs in type theory? General idea:
• A sequent Γ ⊢ 𝑎 ∶ 𝐴 gives a function sending Γ to 𝑎 ∶ 𝐴.
• A cycle uses the function inside the function (recursive call).

Proof assistants (Agda, Rocq, ...) implement recursive calls.

To ensure termination, we check:
• Roqr: structural recursion. This is conservative over induction

(with3 and without4 K).
• Agda: size-change termination. Conservativity is not known.

These conditions are sufficient but not necessary (halting problem).

3Goguen, McBride, McKinna 2006
4Cockx, Devriese, Piessens 2014
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Structural Recursion

One input is structurally smaller in every recursive call:

Example. The Fibonacci function:

fib ∶ ℕ → ℕ,
fib 𝑛 ≔ case 𝑛 { 0 ↦ 0,

suc 𝑛′ ↦ case 𝑛′ { 0 ↦ 1,
suc 𝑛″ ↦ fib 𝑛″ + fib 𝑛′.
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Size-change termination

Every infinite sequence of calls eventually has a path that decreases
infinitely often:

Example.

swap-add ∶ ℕ → ℕ → ℕ,
swap-add 𝑚 𝑛 ≔ case 𝑚 { 0 ↦ 𝑛,

suc 𝑚′ ↦ suc (swap-add 𝑛 𝑚′).

𝑚 𝑚

𝑛 𝑛

>

≥



Introduction Cyclic Proofs Type Theory Conservativity Conclusion

Size-change Termination

Every infinite sequence of calls eventually has a path that decreases
infinitely often:

Example.

g ∶ ℕ → ℕ → ℕ,
g 𝑚 𝑛 ≔ case 𝑚 { 0 ↦ 0,

suc 𝑚′ ↦ case 𝑛 { 0 ↦ suc 0,
suc 𝑛′ ↦ g 𝑚′ 𝑚′ + g 𝑛′ 𝑛′.

𝑚 𝑚

𝑛 𝑛

>

>

𝑚 𝑚

𝑛 𝑛>

>
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Size-change Termination

Every infinite sequence of calls eventually has a path that decreases
infinitely often.

This corresponds to the PSPACE-complete global soundness condition.

In cyclic proof theory, there are results showing that in some cases, this
condition is conservative over induction:

• For first-order 𝜇-calculus with ordinal approximations.5

• For natural numbers.6

We hope to prove a similar result for type theory.

5Sprenger, Dam 2003
6Leigh, Wehr 2023
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Unification

For inductive families such as =-types, pattern matching uses unification.

Example. With normal unification, axiom K is provable:

𝐾 ∶ (𝐶 ∶ 𝑎 = 𝑎 → Type) → 𝐶 refl → (𝛼 ∶ 𝑎 = 𝑎) → 𝐶 𝛼,
𝐾 𝐶 𝑐 𝛼 ≔ case 𝛼 {refl ↦ 𝑐.

Without K we have to restrict unification.
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Conservativity

We are trying to combine ideas:
• Type theory: how to deal with unification and axiom K.
• Cyclic proof theory: how to deal with the global soundness condition.

The main idea is that we unfold the definitions some more.
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Unfold the Tree
Example.

swap-add ∶ ℕ → ℕ → ℕ,
swap-add 𝑚 𝑛 ≔ case 𝑚 { 0 ↦ 𝑛,

suc 𝑚′ ↦ suc (swap-add 𝑛 𝑚′).

𝑚 𝑚

𝑛 𝑛

>

≥

𝑚 𝑛′ 𝑚′

𝑛 𝑚 𝑛′
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Unfold the Tree
Example. g ∶ ℕ → ℕ → ℕ,

𝑚 𝑚
𝑛 𝑛

>

>
𝑚 𝑚
𝑛 𝑛>

>

𝑚″

𝑚′ 𝑚″

𝑚′ 𝑚″

𝑚 𝑚″

𝑛 𝑛″

𝑛′ 𝑛″

𝑛′ 𝑛″

𝑛″



Introduction Cyclic Proofs Type Theory Conservativity Conclusion

Algorithm

We have an algorithm to determine how much to unfold:
• Start unfolding with annotations to track inputs.

The annotations are based on the Safra construction, which makes
nondeterministic 𝜔-automata deterministic.

• If annotations start repeating, then we can stop.
• Such an annotated function corresponds to a reset proof, where we

have an equivalent local soundness condition.
• The annotations give us an idea of the order in which to apply

induction, and the local condition ensures structurally smaller input.
• By following the annotations, we add induction hypotheses.
• We replace recursive calls with appeals to induction hypotheses.
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Conclusion

To summarize:
• The Curry-Howard correspondence extends to recursive functions

and cyclic proofs.
• Cyclic proof theory can be useful for type theory.
• Agda admits more functions than Rocr. Conservativity is only

known for Rocr, we are trying to prove it for Agda.
Our approach is a bit more general than we have seen here:
mix of arbitrary inductive families and mutually recursive functions.

In future work it would be interesting to look at copattern matching.
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