
Y is not typable in λU
and neither are Θ, Ω

Herman Geuvers

Radboud University Nijmegen & TUE
jww Joep Verkoelen

June 12, 2025
TYPES
Glasgow

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 1 / 19

Why fixed-point combinators?

In untyped λ-calculus, a fixed-point combinator F gives you a fixed
point of every term M

F M =β M (F M).

Why is this useful?
Solve recursive equations! E.g. is there an M such that

M x =β if (Zero? x) then 1 elseMult x (M (Pred x))?

Yes: take
M := F (λm.λx .if (Zero? x) then 1 elseMult x (m (Pred x)),
where F is your favourite fixed-point combinator.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 2 / 19

Why fixed-point combinators?

In untyped λ-calculus, a fixed-point combinator F gives you a fixed
point of every term M

F M =β M (F M).

Why is this useful?
Solve recursive equations! E.g. is there an M such that

M x =β if (Zero? x) then 1 elseMult x (M (Pred x))?

Yes: take
M := F (λm.λx .if (Zero? x) then 1 elseMult x (m (Pred x)),
where F is your favourite fixed-point combinator.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 2 / 19

Why fixed-point combinators?

In untyped λ-calculus, a fixed-point combinator F gives you a fixed
point of every term M

F M =β M (F M).

Why is this useful?
Solve recursive equations! E.g. is there an M such that

M x =β if (Zero? x) then 1 elseMult x (M (Pred x))?

Yes: take
M := F (λm.λx .if (Zero? x) then 1 elseMult x (m (Pred x)),
where F is your favourite fixed-point combinator.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 2 / 19

Your favorite fixed point combinator?

Y := λf .(λx .f (x x)) (λx .f (x x))

Θ := (λx f .f (x x f)) (λx f .f (x x f))

L := λf .(λx .x (λp q.f (q p q)) x) (λy .y y)

Writing Mf := λp q.f (q p q), ω := λy .y y , we have

L f =β ωMf ω

=β Mf Mf ω

=β f (ωMf ω)

Theorem
• L is typable in λU.

• Y and Θ and Ω (= ω ω) are not typable in λU.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 3 / 19

Your favorite fixed point combinator?

Y := λf .(λx .f (x x)) (λx .f (x x))

Θ := (λx f .f (x x f)) (λx f .f (x x f))

L := λf .(λx .x (λp q.f (q p q)) x) (λy .y y)

Writing Mf := λp q.f (q p q), ω := λy .y y , we have

L f =β ωMf ω

=β Mf Mf ω

=β f (ωMf ω)

Theorem
• L is typable in λU.

• Y and Θ and Ω (= ω ω) are not typable in λU.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 3 / 19

Your favorite fixed point combinator?

Y := λf .(λx .f (x x)) (λx .f (x x))

Θ := (λx f .f (x x f)) (λx f .f (x x f))

L := λf .(λx .x (λp q.f (q p q)) x) (λy .y y)

Writing Mf := λp q.f (q p q), ω := λy .y y , we have

L f =β ωMf ω

=β Mf Mf ω

=β f (ωMf ω)

Theorem
• L is typable in λU.

• Y and Θ and Ω (= ω ω) are not typable in λU.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 3 / 19

Your favorite fixed point combinator?

Y := λf .(λx .f (x x)) (λx .f (x x))

Θ := (λx f .f (x x f)) (λx f .f (x x f))

L := λf .(λx .x (λp q.f (q p q)) x) (λy .y y)

Writing Mf := λp q.f (q p q), ω := λy .y y , we have

L f =β ωMf ω

=β Mf Mf ω

=β f (ωMf ω)

Theorem
• L is typable in λU.

• Y and Θ and Ω (= ω ω) are not typable in λU.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 3 / 19

What is λU?

λU is higher order predicate logic over polymorphic domains: two
impredicative sorts on top of eachother.

More precisely:

• ⋆ : □, □ : △ (In Rocq: Prop : Type1, Type1 : Type2)

• ⋆ is the impredicative type of formulas, giving higher order
predicate logic

• □ is the impredicative type of data types, giving, e.g.
nat := Πk :□.k → (k → k) → k of type □.

• λU also allows quantification over □:
we have Πk :□.φ : ⋆ (for φ : ⋆).

• λU− is λU without quantification over □.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 4 / 19

What is λU?

λU is higher order predicate logic over polymorphic domains: two
impredicative sorts on top of eachother.
More precisely:

• ⋆ : □, □ : △ (In Rocq: Prop : Type1, Type1 : Type2)

• ⋆ is the impredicative type of formulas, giving higher order
predicate logic

• □ is the impredicative type of data types, giving, e.g.
nat := Πk :□.k → (k → k) → k of type □.

• λU also allows quantification over □:
we have Πk :□.φ : ⋆ (for φ : ⋆).

• λU− is λU without quantification over □.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 4 / 19

What is λU?

λU is higher order predicate logic over polymorphic domains: two
impredicative sorts on top of eachother.
More precisely:

• ⋆ : □, □ : △ (In Rocq: Prop : Type1, Type1 : Type2)

• ⋆ is the impredicative type of formulas, giving higher order
predicate logic

• □ is the impredicative type of data types, giving, e.g.
nat := Πk :□.k → (k → k) → k of type □.

• λU also allows quantification over □:
we have Πk :□.φ : ⋆ (for φ : ⋆).

• λU− is λU without quantification over □.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 4 / 19

Inconsistency of λU

• Girard 1972: λU is inconsistent (and therefore λ⋆, with ⋆ : ⋆)
is inconsistent.
That is: there is a closed term M of type ⊥ := Πα : ⋆.α:

⊢ M : ⊥.

• NB. a term M : ⊥ does not have a normal form.

• Question (Girard): is λU− also inconsistent? Answer
(Coquand 1994): yes, λU− is also inconsistent.

• Hurkens (1995): a short proof of inconsistency of λU−, i.e.:
one can actually observe the term M and play with it.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 5 / 19

Inconsistency of λU

• Girard 1972: λU is inconsistent (and therefore λ⋆, with ⋆ : ⋆)
is inconsistent.
That is: there is a closed term M of type ⊥ := Πα : ⋆.α:

⊢ M : ⊥.

• NB. a term M : ⊥ does not have a normal form.

• Question (Girard): is λU− also inconsistent? Answer
(Coquand 1994): yes, λU− is also inconsistent.

• Hurkens (1995): a short proof of inconsistency of λU−, i.e.:
one can actually observe the term M and play with it.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 5 / 19

What can we compute in λU?

• Howe 1987 (based on Coquand’s 1986 analysis of Girard’s
proof) transformed M : ⊥ into a term Mf with

α : ⋆, f : α→α ⊢ Mf : α.

• Howe showed (in λ⋆) that from Mf a looping combinator can
be defined: a family of terms {Ln}n∈N such that

Ln f =β f (Ln+1 f).

NB. This is enough to define all partial recursive functions.

• A similar construction can be carried out in λU and λU−

(Coquand and Herbelin 1994).

• G. and Pollack (in 1995) showed that the inconsistency proof
of Hurkens yields a looping combinator {Ln}n∈N in λU− (see
Barthe and Coquand 2006).

So we can do everything in λU−?

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 6 / 19

What can we compute in λU?

• Howe 1987 (based on Coquand’s 1986 analysis of Girard’s
proof) transformed M : ⊥ into a term Mf with

α : ⋆, f : α→α ⊢ Mf : α.

• Howe showed (in λ⋆) that from Mf a looping combinator can
be defined: a family of terms {Ln}n∈N such that

Ln f =β f (Ln+1 f).

NB. This is enough to define all partial recursive functions.

• A similar construction can be carried out in λU and λU−

(Coquand and Herbelin 1994).

• G. and Pollack (in 1995) showed that the inconsistency proof
of Hurkens yields a looping combinator {Ln}n∈N in λU− (see
Barthe and Coquand 2006).

So we can do everything in λU−?

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 6 / 19

What can we not compute in λU?

• Are all untyped λ-terms typable in λU?

No

• Is there a fixed point combinator in λU? Don’t know...

To be precise: λU is the following Pure Type System.

λU
S ⋆,□,△
A ⋆ : □,□ : △
R (⋆, ⋆), (□, ⋆), (△, ⋆), (□,□), (△,□)

If you know Rocq:

λU

S Prop,Type1,Type2
A Prop : Type1,Type1 : Type2
R (Prop,Prop), (Type1,Prop), (Type2,Prop),

(Type1,Type1), (Type2,Type1)

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 7 / 19

What can we not compute in λU?

• Are all untyped λ-terms typable in λU? No

• Is there a fixed point combinator in λU? Don’t know...

To be precise: λU is the following Pure Type System.

λU
S ⋆,□,△
A ⋆ : □,□ : △
R (⋆, ⋆), (□, ⋆), (△, ⋆), (□,□), (△,□)

If you know Rocq:

λU

S Prop,Type1,Type2
A Prop : Type1,Type1 : Type2
R (Prop,Prop), (Type1,Prop), (Type2,Prop),

(Type1,Type1), (Type2,Type1)

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 7 / 19

What can we not compute in λU?

• Are all untyped λ-terms typable in λU? No

• Is there a fixed point combinator in λU?

Don’t know...

To be precise: λU is the following Pure Type System.

λU
S ⋆,□,△
A ⋆ : □,□ : △
R (⋆, ⋆), (□, ⋆), (△, ⋆), (□,□), (△,□)

If you know Rocq:

λU

S Prop,Type1,Type2
A Prop : Type1,Type1 : Type2
R (Prop,Prop), (Type1,Prop), (Type2,Prop),

(Type1,Type1), (Type2,Type1)

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 7 / 19

What can we not compute in λU?

• Are all untyped λ-terms typable in λU? No

• Is there a fixed point combinator in λU? Don’t know...

To be precise: λU is the following Pure Type System.

λU
S ⋆,□,△
A ⋆ : □,□ : △
R (⋆, ⋆), (□, ⋆), (△, ⋆), (□,□), (△,□)

If you know Rocq:

λU

S Prop,Type1,Type2
A Prop : Type1,Type1 : Type2
R (Prop,Prop), (Type1,Prop), (Type2,Prop),

(Type1,Type1), (Type2,Type1)

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 7 / 19

What can we not compute in λU?

• Are all untyped λ-terms typable in λU? No

• Is there a fixed point combinator in λU? Don’t know...

To be precise: λU is the following Pure Type System.

λU
S ⋆,□,△
A ⋆ : □,□ : △
R (⋆, ⋆), (□, ⋆), (△, ⋆), (□,□), (△,□)

If you know Rocq:

λU

S Prop,Type1,Type2
A Prop : Type1,Type1 : Type2
R (Prop,Prop), (Type1,Prop), (Type2,Prop),

(Type1,Type1), (Type2,Type1)

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 7 / 19

λU

• We don’t give the full typing rules.

• We divide the set of variables V into three disjoint sets
var⋆, var□ and var△.

• We use standard characters:
var⋆ = {x , y , z , . . .},
var□ = {α, β, γ, . . .},
var△ = {k1, k2, k3, . . .}.
So a variable that lives in a type σ : ⋆ is typically x , y or z .

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 8 / 19

λU

We define the syntactic categories Kinds (K1,K2), Constructors
(P,Q) and Proof terms (p, q). We also introduce Types (σ, τ)
(where Types ⊂ Constructors).

Kinds K ::= k | ⋆ | K → K | Πk :□.K

Constructors P ::= α | λα :K .P | P P
| λk :□.P | P K
| P → P | Πα :K .P

Types σ ::= σ → σ | Πα :K .σ

Proof terms q ::= x | λx :σ.q | q q
| λα :K .q | q P
| λk :□.q | q K

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 9 / 19

λU

We define the syntactic categories Kinds (K1,K2), Constructors
(P,Q) and Proof terms (p, q). We also introduce Types (σ, τ)
(where Types ⊂ Constructors).

Kinds K ::= k | ⋆ | K → K | Πk :□.K

Constructors P ::= α | λα :K .P | P P
| λk :□.P | P K
| P → P | Πα :K .P

Types σ ::= σ → σ | Πα :K .σ

Proof terms q ::= x | λx :σ.q | q q
| λα :K .q | q P
| λk :□.q | q K

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 9 / 19

λU

λU schematically:

Constructors Kinds
Proof terms Types

P,Q : K : □(Type1)
p, q : σ, τ : ⋆(Prop)

x , y , z α, β, γ k1, k2, k3
λx :σ.q , q p
λα :K .q , q P λα :K .Q , Q P
λk :□.q , q K λk :□.P , P K

σ → τ , Πα :K .σ K → K , Πk :□.K

Lemma
• Everything to the right of Proof terms is normalizing.

• Type checking is decidable in λU.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 10 / 19

λU

λU schematically:

Constructors Kinds
Proof terms Types

P,Q : K : □(Type1)
p, q : σ, τ : ⋆(Prop)

x , y , z α, β, γ k1, k2, k3
λx :σ.q , q p
λα :K .q , q P λα :K .Q , Q P
λk :□.q , q K λk :□.P , P K

σ → τ , Πα :K .σ K → K , Πk :□.K

Lemma
• Everything to the right of Proof terms is normalizing.

• Type checking is decidable in λU.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 10 / 19

Erasure from λU to untyped λ-calculus

For q a proof term of λU, we define the erasure of q, denoted by
|t| as follows.

|x | = x
λx :σ.p	= λx .	p		p q	=	p		q
λα :K .p	=	p		p Q	=	p		
λk :□.p	=	p		p K	=	p		

Definition

The untyped lambda term M is typable in λU if there exist Γ, q, σ
such that

Γ ⊢ q : σ : ⋆ and |q| = M.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 11 / 19

Main result

Proposition

The terms Ω, Y and Θ are not typable in λU.

This result comes as a corollary of a more general result:

Theorem

Double self-application is not possible in λU.
Here we mean with “double self-application” a term q : σ : ⋆ such
that

|q| = (λx .M)(λy .N)

and M contains a sub-term x x and N contains a sub-term y y .

So the erasure of a double self-application looks like this:

|q| = (λx x x . . .)(λy y y . . .).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 12 / 19

Parse trees of types

A type σ in normal form is of one of the following two forms (v⃗
and V⃗ or T⃗ may be empty).

• Πv⃗ : V⃗ .τ → ρ
• Πv⃗ : V⃗ .αT⃗

We extend the notion of parse tree of a type σ, known from
Urzyczyn 1997 for system Fω.

Definition

We define the parse tree of a type σ (written pt(σ)) as follows.

pt(Πv⃗ : V⃗ .τ → ρ) :=

Πv⃗ : V⃗

pt(τ)
<

pt(ρ)

>

pt(Πv⃗ : V⃗ .αT⃗) := Πv⃗ : V⃗ .αT⃗

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 13 / 19

Parse trees of types

A type σ in normal form is of one of the following two forms (v⃗
and V⃗ or T⃗ may be empty).

• Πv⃗ : V⃗ .τ → ρ
• Πv⃗ : V⃗ .αT⃗

We extend the notion of parse tree of a type σ, known from
Urzyczyn 1997 for system Fω.

Definition

We define the parse tree of a type σ (written pt(σ)) as follows.

pt(Πv⃗ : V⃗ .τ → ρ) :=

Πv⃗ : V⃗

pt(τ)
<

pt(ρ)

>

pt(Πv⃗ : V⃗ .αT⃗) := Πv⃗ : V⃗ .αT⃗

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 13 / 19

Analysing the parse trees of a type

Definition
• The left-terminal path of pt(σ), ltp(pt(σ)) is the left-most
path in pt(σ) that ends in a node labelled Πv⃗ : V⃗ .α T⃗ .

• The variable α we arrive at is called the head variable of the
type σ, hv(σ).

Definition

For σ, τ types σ ⪯ τ (σ is contained in τ), is defined by

Πv⃗ :V⃗ .ρ ⪯ Πw⃗ :W⃗ .ρ[T⃗/v⃗],

where the variables in w⃗ do not occur free in σ.

The containment relation is reflexive and transitive.

Lemma

If σ ⪯ τ , then length(ltp(σ)) ≤ length(ltp(τ)).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 14 / 19

Analysing the parse trees of a type

Definition
• The left-terminal path of pt(σ), ltp(pt(σ)) is the left-most
path in pt(σ) that ends in a node labelled Πv⃗ : V⃗ .α T⃗ .

• The variable α we arrive at is called the head variable of the
type σ, hv(σ).

Definition

For σ, τ types σ ⪯ τ (σ is contained in τ), is defined by

Πv⃗ :V⃗ .ρ ⪯ Πw⃗ :W⃗ .ρ[T⃗/v⃗],

where the variables in w⃗ do not occur free in σ.

The containment relation is reflexive and transitive.

Lemma

If σ ⪯ τ , then length(ltp(σ)) ≤ length(ltp(τ)).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 14 / 19

Analysing the parse trees of a type

Definition
• The left-terminal path of pt(σ), ltp(pt(σ)) is the left-most
path in pt(σ) that ends in a node labelled Πv⃗ : V⃗ .α T⃗ .

• The variable α we arrive at is called the head variable of the
type σ, hv(σ).

Definition

For σ, τ types σ ⪯ τ (σ is contained in τ), is defined by

Πv⃗ :V⃗ .ρ ⪯ Πw⃗ :W⃗ .ρ[T⃗/v⃗],

where the variables in w⃗ do not occur free in σ.

The containment relation is reflexive and transitive.

Lemma

If σ ⪯ τ , then length(ltp(σ)) ≤ length(ltp(τ)).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 14 / 19

Analysing self-application

Lemma

If σ ⪯ τ and length(ltp(σ)) < length(ltp(τ)), then hv(σ) is
bound at the root of pt(σ).

Proposition

If t : σ : ⋆ and t contains a self application of x , with x : σ, then
hv(σ) is bound at the root of pt(σ).

Proof

The general form of the self-application of x : σ in t is

x T⃗ (λw⃗ : W⃗ .x R⃗).

We have xT⃗ : ρ1 → ρ2 and λw⃗ : W⃗ .x R⃗ : ρ1 for some ρ1, ρ2,
where σ ⪯ ρ1 → ρ2 and σ ⪯ ρ1.
Also length(ltp(ρ1 → ρ2)) = length(ltp(ρ1)) + 1, so
length(ltp(σ)) ≤ length(ltp(ρ1)) < length(ltp(ρ1 → ρ2)),
so hv(σ) is bound at the root of pt(σ).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 15 / 19

Analysing self-application

Lemma

If σ ⪯ τ and length(ltp(σ)) < length(ltp(τ)), then hv(σ) is
bound at the root of pt(σ).

Proposition

If t : σ : ⋆ and t contains a self application of x , with x : σ, then
hv(σ) is bound at the root of pt(σ).

Proof

The general form of the self-application of x : σ in t is

x T⃗ (λw⃗ : W⃗ .x R⃗).

We have xT⃗ : ρ1 → ρ2 and λw⃗ : W⃗ .x R⃗ : ρ1 for some ρ1, ρ2,
where σ ⪯ ρ1 → ρ2 and σ ⪯ ρ1.
Also length(ltp(ρ1 → ρ2)) = length(ltp(ρ1)) + 1, so
length(ltp(σ)) ≤ length(ltp(ρ1)) < length(ltp(ρ1 → ρ2)),
so hv(σ) is bound at the root of pt(σ).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 15 / 19

Analysing self-application

Lemma

If σ ⪯ τ and length(ltp(σ)) < length(ltp(τ)), then hv(σ) is
bound at the root of pt(σ).

Proposition

If t : σ : ⋆ and t contains a self application of x , with x : σ, then
hv(σ) is bound at the root of pt(σ).

Proof

The general form of the self-application of x : σ in t is

x T⃗ (λw⃗ : W⃗ .x R⃗).

We have xT⃗ : ρ1 → ρ2 and λw⃗ : W⃗ .x R⃗ : ρ1 for some ρ1, ρ2,
where σ ⪯ ρ1 → ρ2 and σ ⪯ ρ1.

Also length(ltp(ρ1 → ρ2)) = length(ltp(ρ1)) + 1, so
length(ltp(σ)) ≤ length(ltp(ρ1)) < length(ltp(ρ1 → ρ2)),
so hv(σ) is bound at the root of pt(σ).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 15 / 19

Analysing self-application

Lemma

If σ ⪯ τ and length(ltp(σ)) < length(ltp(τ)), then hv(σ) is
bound at the root of pt(σ).

Proposition

If t : σ : ⋆ and t contains a self application of x , with x : σ, then
hv(σ) is bound at the root of pt(σ).

Proof

The general form of the self-application of x : σ in t is

x T⃗ (λw⃗ : W⃗ .x R⃗).

We have xT⃗ : ρ1 → ρ2 and λw⃗ : W⃗ .x R⃗ : ρ1 for some ρ1, ρ2,
where σ ⪯ ρ1 → ρ2 and σ ⪯ ρ1.
Also length(ltp(ρ1 → ρ2)) = length(ltp(ρ1)) + 1, so
length(ltp(σ)) ≤ length(ltp(ρ1)) < length(ltp(ρ1 → ρ2)),
so hv(σ) is bound at the root of pt(σ).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 15 / 19

No Ω-like terms are typable in λU

Theorem

In λU there is no typable term t such that

|t| = (λx x x . . .)(λy y y . . .).

Proof

We can assume that t has the following shape

(

q︷ ︸︸ ︷
λx : σ. . . .) (

p︷ ︸︸ ︷
λw⃗ : W⃗ .λy : ρ. . . .),

with q : σ → τ and p : σ.

1 The hv(σ) is bound at the root of pt(σ).

2 The hv(ρ) is bound at the root of pt(ρ).

3 σ =β Πw⃗ : W⃗ .ρ→µ for some µ.

4 Contradiction, so the term t cannot be well-typed.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 16 / 19

No Ω-like terms are typable in λU

Theorem

In λU there is no typable term t such that

|t| = (λx x x . . .)(λy y y . . .).

Proof

We can assume that t has the following shape

(

q︷ ︸︸ ︷
λx : σ. . . .) (

p︷ ︸︸ ︷
λw⃗ : W⃗ .λy : ρ. . . .),

with q : σ → τ and p : σ.

1 The hv(σ) is bound at the root of pt(σ).

2 The hv(ρ) is bound at the root of pt(ρ).

3 σ =β Πw⃗ : W⃗ .ρ→µ for some µ.

4 Contradiction, so the term t cannot be well-typed.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 16 / 19

No Ω-like terms are typable in λU

Theorem

In λU there is no typable term t such that

|t| = (λx x x . . .)(λy y y . . .).

Proof

We can assume that t has the following shape

(

q︷ ︸︸ ︷
λx : σ. . . .) (

p︷ ︸︸ ︷
λw⃗ : W⃗ .λy : ρ. . . .),

with q : σ → τ and p : σ.

1 The hv(σ) is bound at the root of pt(σ).

2 The hv(ρ) is bound at the root of pt(ρ).

3 σ =β Πw⃗ : W⃗ .ρ→µ for some µ.

4 Contradiction, so the term t cannot be well-typed.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 16 / 19

Conclusion

The following well-known untyped λ-terms are not typable in λU:

Ω = (λx .x x) (λx .x x),

Y = λf .(λx .f (x x)) (λx .f (x x)),

Θ = (λx f .f (x x f) (λx f .f (x x f)).

• NB. the typable fixed-point combinator

L := λf .(λx .x (λp q.f (q p q)) x) (λy .y y)

does not have double self-application.

• That the typable version of L is not a fixed-point combinator
(but merely a looping-combinator) is due to the type
annotations in the λ-abstractions.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 17 / 19

Conclusion

The following well-known untyped λ-terms are not typable in λU:

Ω = (λx .x x) (λx .x x),

Y = λf .(λx .f (x x)) (λx .f (x x)),

Θ = (λx f .f (x x f) (λx f .f (x x f)).

• NB. the typable fixed-point combinator

L := λf .(λx .x (λp q.f (q p q)) x) (λy .y y)

does not have double self-application.

• That the typable version of L is not a fixed-point combinator
(but merely a looping-combinator) is due to the type
annotations in the λ-abstractions.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 17 / 19

Further work / Open questions

• Is there a fixed-point combinator typable in λU?

• Is Ω (Y , Θ, ...) typable in λ⋆?

• Do other paradoxes give significant other looping
combinators?

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 18 / 19

Questions?

Questions?

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in λU 19 / 19

