Y is not typable in λU and neither are Θ , Ω

Herman Geuvers

Radboud University Nijmegen & TUE jww Joep Verkoelen

> June 12, 2025 TYPES Glasgow

Herman Geuvers

June 12, 2025 TYPES Glasgow

In untyped $\lambda\text{-calculus},$ a fixed-point combinator F gives you a fixed point of every term M

$$FM =_{\beta} M(FM).$$

In untyped λ -calculus, a fixed-point combinator F gives you a fixed point of every term M

$$FM =_{\beta} M(FM).$$

Why is this useful? Solve recursive equations! E.g. is there an M such that

 $M x =_{\beta}$ **if** (Zero? x) **then** 1 **else** Mult x (M (Pred x))?

In untyped λ -calculus, a fixed-point combinator F gives you a fixed point of every term M

$$FM =_{\beta} M(FM).$$

Why is this useful? Solve recursive equations! E.g. is there an *M* such that

 $M x =_{\beta}$ **if** (Zero? x) **then** 1 **else** Mult x (M (Pred x))?

Yes: take $M := F(\lambda m.\lambda x.if(\text{Zero}? x) \text{ then } 1 \text{ else } \text{Mult } x(m(\text{Pred } x)),$ where F is your favourite fixed-point combinator.

$$Y := \lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$$

$$\Theta := (\lambda x f.f(x x f))(\lambda x f.f(x x f))$$

$$Y := \lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$$

$$\Theta := (\lambda x f.f(x x f))(\lambda x f.f(x x f))$$

 $L := \lambda f.(\lambda x.x (\lambda p q.f (q p q)) x) (\lambda y.y y)$

$$Y := \lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$$

$$\Theta := (\lambda x f.f(x x f))(\lambda x f.f(x x f))$$

$$L := \lambda f.(\lambda x.x (\lambda p q.f (q p q))x) (\lambda y.y y)$$

Writing $M_f := \lambda p q.f(q p q), \omega := \lambda y.y y$, we have $L f =_{\beta} \omega M_f \omega$ $=_{\beta} M_f M_f \omega$ $=_{\beta} f(\omega M_f \omega)$

$$Y := \lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$$

$$\Theta := (\lambda x f.f(x x f))(\lambda x f.f(x x f))$$

$$L := \lambda f.(\lambda x.x (\lambda p q.f (q p q))x) (\lambda y.y y)$$

Writing $M_f := \lambda p q f (q p q)$, $\omega := \lambda y g y$, we have $L f =_{\beta} \omega M_f \omega$ $=_{\beta} M_f M_f \omega$ $=_{\beta} f (\omega M_f \omega)$

THEOREM

- *L* is typable in λU .
- Y and Θ and Ω (= $\omega \omega$) are not typable in λU .

 λU is higher order predicate logic over polymorphic domains: two impredicative sorts on top of eachother.

 λU is higher order predicate logic over polymorphic domains: two impredicative sorts on top of eachother. More precisely:

- \star : \Box , \Box : \triangle (In Rocq: *Prop* : *Type*₁, *Type*₁ : *Type*₂)
- * is the impredicative type of formulas, giving higher order predicate logic
- □ is the impredicative type of data types, giving, e.g. nat := ∏k:□.k → (k → k) → k of type □.

 λU is higher order predicate logic over polymorphic domains: two impredicative sorts on top of eachother. More precisely:

- \star : \Box , \Box : \triangle (In Rocq: *Prop* : *Type*₁, *Type*₁ : *Type*₂)
- * is the impredicative type of formulas, giving higher order predicate logic
- □ is the impredicative type of data types, giving, e.g. nat := ∏k:□.k → (k → k) → k of type □.
- λU also allows quantification over □: we have Πk:□.φ : ★ (for φ : ★).
- λU^- is λU without quantification over \Box .

Inconsistency of λU

Girard 1972: λU is inconsistent (and therefore λ*, with * : *) is inconsistent.

That is: there is a closed term *M* of type $\bot := \Pi \alpha : \star . \alpha$:

 $\vdash M : \bot$.

• NB. a term $M : \bot$ does not have a normal form.

Inconsistency of λU

Girard 1972: λU is inconsistent (and therefore λ*, with * : *) is inconsistent.

That is: there is a closed term *M* of type $\bot := \Pi \alpha : \star . \alpha$:

$$\vdash M : \bot$$
.

- NB. a term $M : \bot$ does not have a normal form.
- Question (Girard): is λU^- also inconsistent? Answer (Coquand 1994): yes, λU^- is also inconsistent.
- Hurkens (1995): a short proof of inconsistency of λU^- , i.e.: one can actually observe the term M and play with it.

- Howe 1987 (based on Coquand's 1986 analysis of Girard's proof) transformed M : ⊥ into a term M_f with
 α : ⋆, f : α→α ⊢ M_f : α.
- Howe showed (in λ*) that from M_f a looping combinator can be defined: a family of terms {L_n}_{n∈ℕ} such that

$$L_n f =_\beta f(L_{n+1} f).$$

NB. This is enough to define all partial recursive functions.

- Howe 1987 (based on Coquand's 1986 analysis of Girard's proof) transformed M : ⊥ into a term M_f with
 α : ⋆, f : α→α ⊢ M_f : α.
- Howe showed (in λ*) that from M_f a looping combinator can be defined: a family of terms {L_n}_{n∈ℕ} such that

$$L_n f =_\beta f(L_{n+1} f).$$

NB. This is enough to define all partial recursive functions.

- A similar construction can be carried out in λU and λU⁻ (Coquand and Herbelin 1994).
- G. and Pollack (in 1995) showed that the inconsistency proof of Hurkens yields a looping combinator {L_n}_{n∈ℕ} in λU[−] (see Barthe and Coquand 2006).

So we can do everything in λU^- ?

• Are all untyped λ -terms typable in λU ?

• Are all untyped λ -terms typable in λU ? No

- Are all untyped λ -terms typable in λU ? No
- Is there a fixed point combinator in λU ?

- Are all untyped λ -terms typable in λU ? No
- Is there a fixed point combinator in λU ? Don't know...

- Are all untyped λ -terms typable in λU ? No
- Is there a fixed point combinator in λU ? Don't know...

To be precise: λU is the following Pure Type System.

$$\lambda U \begin{bmatrix} \mathcal{S} & \star, \Box, \triangle \\ \mathcal{A} & \star : \Box, \Box : \triangle \\ \mathcal{R} & (\star, \star), (\Box, \star), (\triangle, \star), (\Box, \Box), (\triangle, \Box) \end{bmatrix}$$

If you know Rocq:

$$\lambda U \begin{bmatrix} S & Prop, Type_1, Type_2 \\ A & Prop : Type_1, Type_1 : Type_2 \\ \mathcal{R} & (Prop, Prop), (Type_1, Prop), (Type_2, Prop), \\ & (Type_1, Type_1), (Type_2, Type_1) \end{bmatrix}$$

- We don't give the full typing rules.
- We divide the set of variables \mathcal{V} into three disjoint sets $\operatorname{var}^{\star}$, $\operatorname{var}^{\Box}$ and $\operatorname{var}^{\Delta}$.
- We use standard characters:

$$\operatorname{var}^{\star} = \{x, y, z, \ldots\},\$$
$$\operatorname{var}^{\Box} = \{\alpha, \beta, \gamma, \ldots\},\$$
$$\operatorname{var}^{\Delta} = \{k_1, k_2, k_3, \ldots\}.$$

So a variable that lives in a type $\sigma : \star$ is typically x, y or z.

We define the syntactic categories Kinds (K_1, K_2) , Constructors (P, Q) and Proof terms (p, q). We also introduce Types (σ, τ) (where Types \subset Constructors).

We define the syntactic categories Kinds (K_1, K_2), Constructors (P, Q) and Proof terms (p, q). We also introduce Types (σ, τ) (where Types \subset Constructors).

 $K ::= k \mid \star \mid K \rightarrow K \mid \Pi k : \Box K$ Kinds Constructors $P ::= \alpha \mid \lambda \alpha : K \cdot P \mid P P$ $| \lambda k : \Box . P | P K$ $| P \to P | \Pi \alpha : K . P$ $\sigma ::= \sigma \rightarrow \sigma \mid \Pi \alpha : K.\sigma$ Types Proof terms $q ::= x \mid \lambda x : \sigma . q \mid q q$ $|\lambda \alpha : K.q | q P$ $|\lambda k: \Box. q | q K$

λU schematically:

	Constructors	Kinds	
Proof terms	Types		
	P, Q	: <i>K</i>	$: \Box(Type_1)$
p, q	$: \sigma, \tau$: * (<i>Prop</i>)	
x, y, z	$lpha,eta,\gamma$	k_1, k_2, k_3	
λx : σ . q , q p			
$\lambda \alpha$:K.q , qP	$\lambda lpha$: K.Q , Q P	5	
$\lambda k:\Box.q$, qK	$\lambda k:\Box .P$, PK	•	
	$\sigma \to \tau , \ \Pi \alpha : K.\sigma$	$K \to K$, $\Pi k : \Box . K$	

λU schematically:

	Constructors	Kinds	
Proof terms	Types		
	P, Q	: K	$: \Box(Type_1)$
p, q	: σ, au	: * (<i>Prop</i>)	
<i>x</i> , <i>y</i> , <i>z</i>	$lpha,eta,\gamma$	k_1, k_2, k_3	
λx : σ . q , q p			
$\lambda lpha$:K.q , qP	$\lambda lpha$: K.Q , QP		
$\lambda k:\Box.q$, qK	$\lambda k:\Box .P$, PK	•	
	$\sigma \to \tau \ , \ \Pi \alpha : K.\sigma$	$ K \rightarrow K , \Pi k : \Box . K$	

Lemma

- Everything to the right of $\operatorname{Proof\ terms}$ is normalizing.
- Type checking is decidable in λU .

Herman Geuvers

June 12, 2025 TYPES Glasgow

Erasure from λU to untyped λ -calculus

For *q* a proof term of λU , we define the erasure of *q*, denoted by |t| as follows.

$$\begin{aligned} |x| &= x\\ |\lambda x : \sigma. p| &= \lambda x. |p| & |p q| &= |p||q\\ |\lambda \alpha : K. p| &= |p| & |p Q| &= |p|\\ |\lambda k : \Box. p| &= |p| & |p K| &= |p| \end{aligned}$$

DEFINITION

The untyped lambda term M is typable in λU if there exist Γ, q, σ such that

$$\Gamma \vdash q : \sigma : \star$$
 and $|q| = M$.

PROPOSITION

The terms Ω , Y and Θ are not typable in λU .

This result comes as a corollary of a more general result:

Theorem

Double self-application is not possible in λU .

Here we mean with "double self-application" a term $q:\sigma:\star$ such that

 $|q| = (\lambda x.M)(\lambda y.N)$

and M contains a sub-term xx and N contains a sub-term yy.

So the erasure of a double self-application looks like this:

$$|q| = (\lambda x...x x...)(\lambda y...y y...).$$

Parse trees of types

A type σ in normal form is of one of the following two forms (\vec{v} and \vec{V} or \vec{T} may be empty).

•
$$\Pi \vec{v} : \vec{V} . \tau \to \rho$$

• $\Pi \vec{v} : \vec{V} . \tau \to r$

Parse trees of types

A type σ in normal form is of one of the following two forms (\vec{v} and \vec{V} or \vec{T} may be empty).

•
$$\Pi \vec{v} : \vec{V} \cdot \tau \to \rho$$

• $\Pi \vec{v} : \vec{V} . \alpha \vec{T}$

We extend the notion of parse tree of a type σ , known from Urzyczyn 1997 for system F ω .

DEFINITION

We define the parse tree of a type σ (written $pt(\sigma)$) as follows.

$$pt(\Pi \vec{v} : \vec{V}.\tau \to \rho) :=$$

$$pt(\tau) \qquad pt(\tau) \qquad pt(\rho)$$

$$pt(\Pi \vec{v} : \vec{V}.\alpha \vec{T}) \qquad := \ \Pi \vec{v} : \vec{V}.\alpha \vec{T}$$

Analysing the parse trees of a type

DEFINITION

- The left-terminal path of $pt(\sigma)$, $ltp(pt(\sigma))$ is the left-most path in $pt(\sigma)$ that ends in a node labelled $\Pi \vec{v} : \vec{V} . \alpha \vec{T}$.
- The variable α we arrive at is called the head variable of the type σ , hv(σ).

Analysing the parse trees of a type

DEFINITION

- The left-terminal path of $pt(\sigma)$, $ltp(pt(\sigma))$ is the left-most path in $pt(\sigma)$ that ends in a node labelled $\Pi \vec{v} : \vec{V} . \alpha \vec{T}$.
- The variable α we arrive at is called the head variable of the type σ , hv(σ).

DEFINITION

For σ, τ types $\sigma \preceq \tau$ (σ is contained in τ), is defined by

$$\Pi \vec{v} : \vec{V} . \rho \quad \preceq \quad \Pi \vec{w} : \vec{W} . \rho [\vec{T} / \vec{v}],$$

where the variables in \vec{w} do not occur free in σ .

The containment relation is reflexive and transitive.

Analysing the parse trees of a type

DEFINITION

- The left-terminal path of $pt(\sigma)$, $ltp(pt(\sigma))$ is the left-most path in $pt(\sigma)$ that ends in a node labelled $\Pi \vec{v} : \vec{V} . \alpha \vec{T}$.
- The variable α we arrive at is called the head variable of the type σ , hv(σ).

DEFINITION

For σ, τ types $\sigma \preceq \tau$ (σ is contained in τ), is defined by

$$\Pi \vec{v} : \vec{V} . \rho \quad \preceq \quad \Pi \vec{w} : \vec{W} . \rho [\vec{T} / \vec{v}],$$

where the variables in \vec{w} do not occur free in σ .

The containment relation is reflexive and transitive.

Lemma

If $\sigma \preceq \tau$, then l	$\operatorname{ength}(\operatorname{ltp}(\sigma)) \leq$	length(ltp(τ)).
-----------------------------------	---	------------------------

Lemma

If $\sigma \leq \tau$ and $length(ltp(\sigma)) < length(ltp(\tau))$, then $hv(\sigma)$ is bound at the root of $pt(\sigma)$.

Lemma

If $\sigma \leq \tau$ and $length(ltp(\sigma)) < length(ltp(\tau))$, then $hv(\sigma)$ is bound at the root of $pt(\sigma)$.

PROPOSITION

If $t : \sigma : \star$ and t contains a self application of x, with $x : \sigma$, then $hv(\sigma)$ is bound at the root of $pt(\sigma)$.

Lemma

If $\sigma \leq \tau$ and $length(ltp(\sigma)) < length(ltp(\tau))$, then $hv(\sigma)$ is bound at the root of $pt(\sigma)$.

PROPOSITION

If $t : \sigma : \star$ and t contains a self application of x, with $x : \sigma$, then $hv(\sigma)$ is bound at the root of $pt(\sigma)$.

Proof

The general form of the self-application of $x : \sigma$ in t is $x \vec{T} (\lambda \vec{w} : \vec{W} . x \vec{R}).$

We have $x \vec{T} : \rho_1 \to \rho_2$ and $\lambda \vec{w} : \vec{W}.x \vec{R} : \rho_1$ for some ρ_1, ρ_2 , where $\sigma \leq \rho_1 \to \rho_2$ and $\sigma \leq \rho_1$.

Lemma

If $\sigma \leq \tau$ and $length(ltp(\sigma)) < length(ltp(\tau))$, then $hv(\sigma)$ is bound at the root of $pt(\sigma)$.

PROPOSITION

If $t : \sigma : \star$ and t contains a self application of x, with $x : \sigma$, then $hv(\sigma)$ is bound at the root of $pt(\sigma)$.

Proof

The general form of the self-application of $x : \sigma$ in t is $x \vec{T} (\lambda \vec{w} : \vec{W} . x \vec{R}).$

We have $x\vec{T}: \rho_1 \to \rho_2$ and $\lambda \vec{w}: \vec{W}.x \vec{R}: \rho_1$ for some ρ_1, ρ_2 , where $\sigma \leq \rho_1 \to \rho_2$ and $\sigma \leq \rho_1$. Also length(ltp($\rho_1 \to \rho_2$)) = length(ltp(ρ_1)) + 1, so length(ltp(σ)) \leq length(ltp(ρ_1)) < length(ltp($\rho_1 \to \rho_2$)), so hv(σ) is bound at the root of pt(σ).

Herman Geuvers

No Ω -like terms are typable in λU

Theorem

In λU there is no typable term t such that

$$|t| = (\lambda x \dots x x \dots)(\lambda y \dots y y \dots).$$

No Ω -like terms are typable in λU

Theorem

In λU there is no typable term t such that

$$t| = (\lambda x \dots x x \dots)(\lambda y \dots y y \dots).$$

Proof

We can assume that *t* has the following shape

$$(\overbrace{\lambda x:\sigma\ldots}^{q})(\overbrace{\lambda \vec{w}:\vec{W}.\lambda y:\rho\ldots}^{p}),$$

with $q: \sigma \rightarrow \tau$ and $p: \sigma$.

Herman Geuvers

No Ω -like terms are typable in λU

Theorem

In λU there is no typable term t such that

$$t| = (\lambda x \dots x x \dots)(\lambda y \dots y y \dots).$$

Proof

We can assume that t has the following shape

$$(\overbrace{\lambda x:\sigma\ldots}^{q})(\overbrace{\lambda \vec{w}:\vec{W}.\lambda y:\rho\ldots}^{p}),$$

with $q: \sigma \to \tau$ and $p: \sigma$.

- **1** The $hv(\sigma)$ is bound at the root of $pt(\sigma)$.
- **2** The $hv(\rho)$ is bound at the root of $pt(\rho)$.
- **3** $\sigma =_{\beta} \Pi \vec{w} : \vec{W} . \rho \rightarrow \mu$ for some μ .
- **4** Contradiction, so the term *t* cannot be well-typed.

Conclusion

The following well-known untyped λ -terms are not typable in λU :

$$\Omega = (\lambda x.x x) (\lambda x.x x),$$

$$Y = \lambda f.(\lambda x.f(x x))(\lambda x.f(x x)),$$

$$\Theta = (\lambda x f.f(x x f) (\lambda x f.f(x x f)).$$

Conclusion

The following well-known untyped λ -terms are not typable in λU :

$$\Omega = (\lambda x.x x) (\lambda x.x x),$$

$$Y = \lambda f.(\lambda x.f(x x))(\lambda x.f(x x)),$$

$$\Theta = (\lambda x f.f(x x f) (\lambda x f.f(x x f)).$$

• NB. the typable fixed-point combinator

$$L := \lambda f.(\lambda x.x (\lambda p q.f (q p q))x) (\lambda y.y y)$$

does not have double self-application.

 That the typable version of L is not a fixed-point combinator (but merely a looping-combinator) is due to the type annotations in the λ-abstractions.

- Is there a fixed-point combinator typable in λU ?
- Is Ω (Y, Θ , ...) typable in $\lambda \star$?
- Do other paradoxes give significant other looping combinators?

Questions?

