About the construction of simplicial and cubical sets in indexed form: the case of degeneracies

Hugo Herbelin and Ramkumar Ramachandra

TYPES 2025

Glasgow

10 June 2025

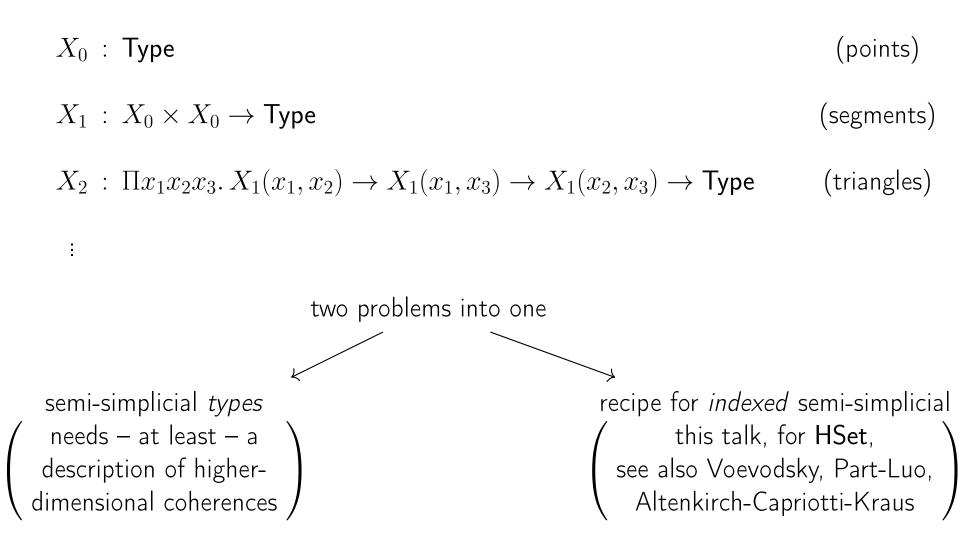
The problem of *semi-simplicial types*

Construct the following family of family types in homotopy type theory:

 $\begin{array}{ll}X_0 : \mathsf{Type} & (\mathsf{points})\\\\X_1 : X_0 \times X_0 \to \mathsf{Type} & (\mathsf{segments})\\\\X_2 : \Pi x_1 x_2 x_3. X_1(x_1, x_2) \to X_1(x_1, x_3) \to X_1(x_2, x_3) \to \mathsf{Type} & (\mathsf{triangles})\\\\\vdots\end{array}$

The problem of *semi-simplicial types*

Construct the following family of family types in pure type theory:



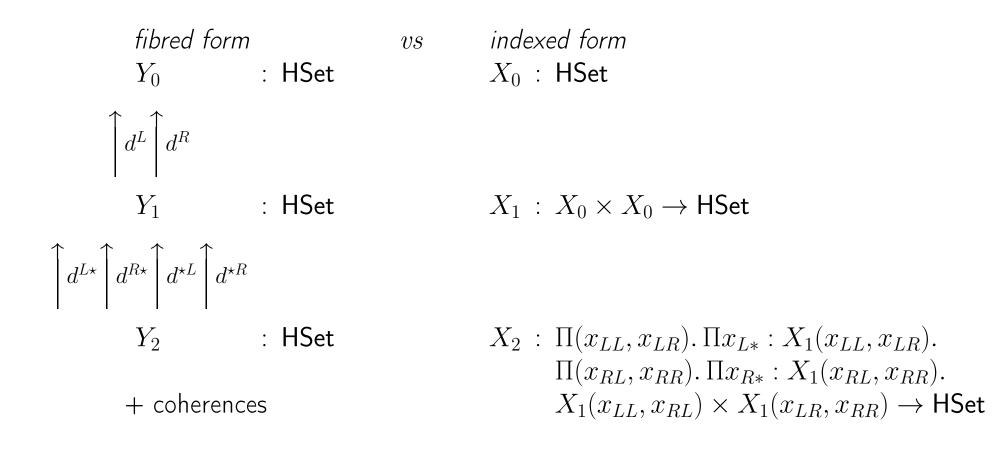
The fibred/indexed correspondence for **HSet**

For B : **HSet**



Iterating the fibred/indexed correspondence for HSet

Application to definition of Reedy presheaves in *indexed form*, here for semi-cubical sets:



Iterating the fibred/indexed correspondence for **HSet**

Application to the definition of Reedy presheaves in *indexed form*, here for cubical sets:

fibred form		vs	indexed form		
Y_0	: HSet		X_0 : HSet		
$\int d^L \int d^R$					
Y_1	: HSet		$X_1 : X_0 \times X_0 \to HSet$		
$\int d^{L\star} \int d^{R\star} \int d^{\star L} \int d^{\star R}$;				
Y_2	: HSet		$X_2 : \Pi(x_{LL}, x_{LR}). \Pi x_{L*} : X_1(x_{LL}, x_{LR}). \\ \Pi(x_{RL}, x_{RR}). \Pi x_{R*} : X_1(x_{RL}, x_{RR}).$		
+ coherences			$X_1(x_{LL}, x_{RL}) \times X_1(x_{LR}, x_{RR}) \to HSet$		
N A					

Motivations:

1. The iterated fibred/indexed correspondence is interesting in itself

2. Suggests models of type theory closer to the syntax: e.g. equality interpreted as a (relevant) relation rather than as a span

Rest of the talk

Presheaves in "indexed" form

- following a *n*-ary "parametricity" recipe
 - s.t. *unary* parametricity gives augmented semi-simplicial sets
 - and *binary* parametricity gives semi-cubical sets
- equipped with a *degeneracy*
- machine-checked in Rocq

A uniform approach to augmented simplicial sets and cubical sets

Augmented simplicial and cubical categories only differ in the "arity" of a finite set ν :

$$\begin{array}{ll} \mathsf{Obj} & := \mathbb{N} \\ \mathsf{Hom}(p,n) & := \{l \in (\nu \sqcup \{\star\})^n \mid \mathsf{number of} \star \mathsf{in} \ l = p\} \\ g \circ f & := \begin{cases} f & \mathsf{if} \ g = \epsilon \\ a \left(g' \circ f\right) & \mathsf{if} \ g = a \ g', \mathsf{where} \ a \in \nu \\ a \left(g' \circ f'\right) & \mathsf{if} \ g = \star g', \ f = a \ f', \mathsf{where} \ a \in \nu \mathsf{ or} \ a = \star \mathsf{id} \\ & := \star \ldots \star \ n \ \mathsf{times} \ \mathsf{for} \ \mathsf{id} \in \mathsf{Hom}(n,n) \end{array}$$

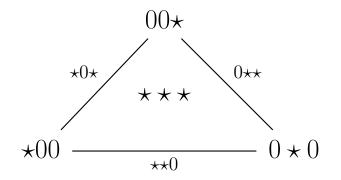
A uniform approach to augmented simplicial sets and cubical sets

Augmented simplicial and cubical categories only differ in the "arity" of a finite set ν :

$$\begin{array}{ll} \mathsf{Obj} & := \mathbb{N} \\ \mathsf{Hom}(p,n) & := \{l \in (\nu \sqcup \{\star\})^n \mid \mathsf{number of} \star \mathsf{in} \ l = p\} \\ g \circ f & := \begin{cases} f & \mathsf{if} \ g = \epsilon \\ a \left(g' \circ f\right) & \mathsf{if} \ g = a \ g', \mathsf{where} \ a \in \nu \\ a \left(g' \circ f'\right) & \mathsf{if} \ g = \star g', \ f = a \ f', \mathsf{where} \ a \in \nu \mathsf{ or} \ a = \star \\ \mathsf{id} & := \star \ldots \star \ n \ \mathsf{times} \ \mathsf{for} \ \mathsf{id} \in \mathsf{Hom}(n,n) \end{array}$$

augmented semi-simplicial sets with $\nu = \{0\}$ (counting from -1)

semi-cubical sets with $\nu = \{L, R\}$ (counting from 0)



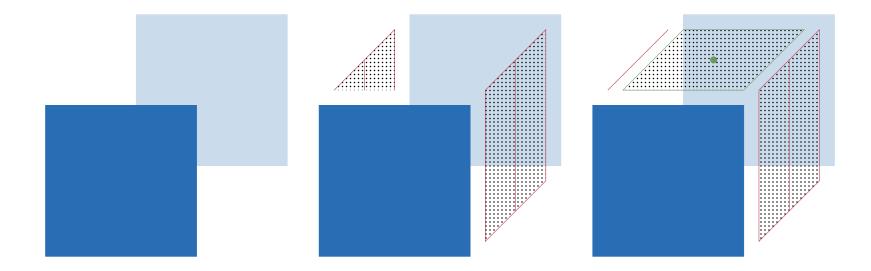
$$\begin{array}{c|c}
LR & \xrightarrow{\star R} & RR \\
 L\star & & |R\star \\
 LL & \xrightarrow{\star L} & RL
\end{array}$$

An effective indexed construction as a dependent stream of dependent sets

			u-sets
vSet _m		:	$HSet_{m+1}$
vSet _m		≜	$\nu Set^{\geq 0}_{\overline{m}}(*)$
$v \operatorname{Set}_{m}^{\geq n}$	$(D: v \operatorname{Set}_m^{\leq n})$:	$HSet_{m+1}$
vSet ^{≥n}	D	≜	$\Sigma R: \nu \operatorname{Set}_{m}^{=n}(D). \nu \operatorname{Set}_{m}^{\geq n+1}(D, R)$
			Truncated ν -sets
$v \operatorname{Set}_{m}^{< n}$:	$HSet_{m+1}$
$v \operatorname{Set}_{m}^{<0}$		≜	unit
$\nu \operatorname{Set}_m^{< n'}$	+1	≜	$\Sigma D: \nu \operatorname{Set}_{m}^{< n'}. \nu \operatorname{Set}_{m}^{= n'}(D)$
$v \operatorname{Set}_{m}^{=n}$	$(D: vSet_m^{\leq n})$) :	$HSet_{m+1}$
$\nu \operatorname{Set}_m^{=n}$	D	≜	$\operatorname{fullframe}_m^n(D) \to \operatorname{HSet}_m$

where $fullframe_{m}^{n}$ is defined by mutual recursive construction (see next slides)

The recursive process used to build frames from layers of paintings



The recursive construction, formally

fullframe ⁿ	$(D: v \operatorname{Set}_m^{\leq n})$:	HSet _m
fullframe ⁿ	D	≜	$frame^{n,n}(D)$
frame ^{n,p,p≤n}	$(D: vSet_m^{\leq n})$:	HSet _m
frame ^{n,0}	D	≜	unit
frame ^{n,p'+1}	D	≜	Σd : frame ^{n,p'} (D). layer ^{n,p'} (d)
layer ^{n,p,p<n< sup=""></n<>}	${D: \nu Set_m^{\leq n}} (d: frame^{n,p}(D))$:	HSetm
layer ^{n,p}	D d	≜	$\Pi \omega$.painting ^{n-1,p} (D.2)(restr ^{n,p} _{frame,ω,p} (d))
painting ^{n,p,p} ≤n	$(D: \nu Set_m^{\leq n}) (E: \nu Set_m^{=n}(D)) (d: frame^{n,p}(D))$:	HSetm
painting ^{n,p,p=n}	DEd	≜	E(d)
painting ^{n,p,p<n< sup=""></n<>}	DEd	≜	Σl : layer ^{n,p} (d). painting ^{n,p+1} (E)(d, l)

where we need to define restr_{frame} (see next slide)

The recursive construction: restrictions ("faces")

restr ^{n,p,p≤q≤n−1}	${D: \nu Set^{< n}}$ $(d: frame^{n,p}(D))$:	$frame^{n-1,p}(D.1)$
restr _{frame,e,q}	D *	≜	*
restr _{frame,e,q} $n,p'+1$	D(d, l)	≜	$(\operatorname{restr}_{frame, e, q}^{n, p'}(d), \operatorname{restr}_{layer, e, q-1}^{n, p'}(l))$
restr <mark>n,p,p≤q≤n−2</mark> layer,e,q	$ \{D: \nu Set^{< n}\} \\ \{d: frame^{n,p}(D)\} \\ (l: layer^{n,p}(d)) $:	$layer^{n-1,p}(restr^{n,p}_{frame,e,q+1}(d))$
estr <mark>1,p</mark>	D d l	≜	$\lambda \omega.(\overrightarrow{\operatorname{coh}_{\operatorname{frame},e,\omega,q,p}^{n,p}(d)}(\operatorname{restr}_{\operatorname{painting},e,q}^{n-1,p}(D.2)(l_{\omega})))$
estr ^{n,p,p≤q≤n−1} painting,e,q	$(D: \nu Set^{< n})$ $(E: \nu Set^{= n}(D))$ $(d: frame^{n,p}(D))$ $(c: painting^{n,p}(E)(d))$:	$painting^{n-1,p}(D.2)(restr^{n,p}_{frame,e,q}(d))$
restr ^{n,p,p=q} painting,e,q	D E d (l,_)	≜	l_e
estr ^{n,p,p<q< sup=""></q<>}	D E d (l, c)	≜	$(\operatorname{restr}_{layer,e,q-1}^{n,p}(l), \operatorname{restr}_{painting,e,q}^{n,p+1}(E)(c))$

where we need to define coh_{frame} (see next slide)

The recursive construction: coherences

$\cosh_{frame,e,\omega,q,r}^{n,p,p\leq r\leq q\leq n-2}$	$ \{D: \nu Set^{< n}\} \\ (d: frame(D)) $:	$restr_{frame,e,q}^{n-1,p}(restr_{frame,\omega,r}^{n,p}(d)) = restr_{frame,\omega,r}^{n-1,p}(restr_{frame,e,q+1}^{n,p}(d))$
$\cosh_{\text{frame},e,\omega,q,r}^{n,0}$	D *	≜	refl(*)
$\cosh_{\text{frame},e,\omega,q,r}^{n,p'+1}$	D(d, l)	≜	$(\operatorname{coh}_{\operatorname{frame},e,\omega,q,r}^{n,p'}(d), \operatorname{coh}_{\operatorname{layer},e,\omega,q-1,r-1}^{n,p'}(l))$
coh ^{n,p,p≤r≤q≤n−3} layer,e,ω,q,r	$ \{D: \nu Set^{$:	$restr_{layer,e,q}^{n-1,p}(restr_{layer,\omega,r}^{n,p}(l)) = restr_{layer,\omega,r}^{n-1,p}(restr_{layer,e,q+1}^{n,p}(l))$
:oh ^{n,p} layer,e,w,q,r	D d l	≜	$\lambda \theta. \operatorname{coh}_{\operatorname{painting}, e, \omega, q, r}^{n-1, p}(D.2)(l_{\theta})$
coh ^{n,p,p≤r≤q≤n−2} painting,e,ω,q,r	$ \{D: \nu Set^{$:	$restr_{painting,e,q}^{n-1,p}(D.2)(restr_{painting,\omega,r}^{n,p}(E)(c)) = restr_{painting,\omega,r}^{n-1,p}(D.2)(restr_{painting,e,q+1}^{n,p}(E)(c))$
$coh_{painting,e,\omega,q,r}^{n,p,p=r}$	D E d (l,_)	≜	$\operatorname{refl}(\operatorname{restr}_{\operatorname{painting},e,q}^{n-1,p}(D.2)(I_{\omega}))$
$\cosh_{\text{painting},e,\omega,q,r}^{n,p,p< r}$	D E d (l, c)	≜	$(\operatorname{coh}_{\operatorname{layer},e,\omega,q-1,r-1}^{n,p}(l), \operatorname{coh}_{\operatorname{painting},e,\omega,q,r}^{n,p+1}(E)(c))$

where we hide many steps of equational reasoning: proof-irrelevance of equality in **HSet**, identification of equality of pairs and pairs of equalities, groupoid properties of equality

About the formalisation

Complex proof of termination

- made several unsuccessful attempts
- construction completed in Rocq in Apr 2022 (inductively building 3 levels at once with two subinductions)
- degeneracies completed in Nov 2024
- we are working on a simplification saving a lot of equational reasoning
- code at https://github.com/artagnon/bonak

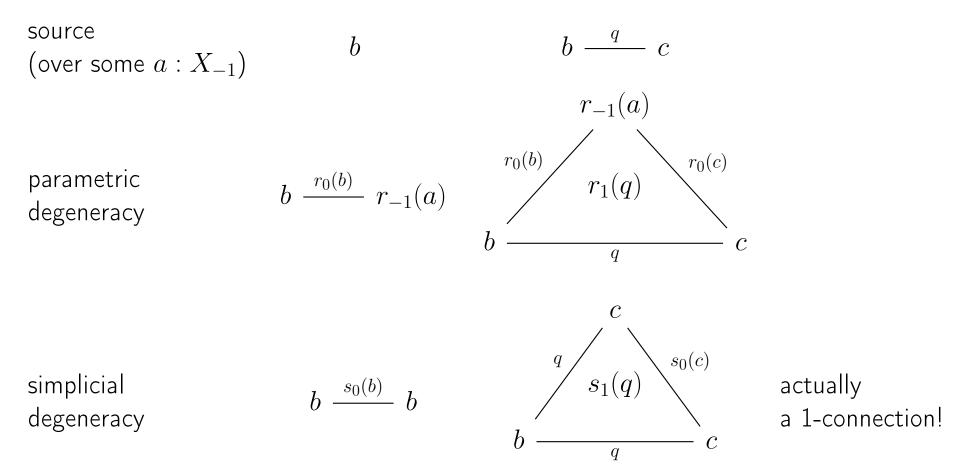
Note: "paper" construction also fully formulated in Agda (w/o termination)

Adding (one) degeneracy (in the last direction)

fibred form	vs	indexed form	
Y_0 : HSet		X_0 : HSet	(points)
Y_1 : HSet		$X_1 : X_0 \times X_0 \to HSet$	(segments)
$ \begin{array}{c} \uparrow \uparrow \uparrow \uparrow \downarrow \\ Y_2 & : HSet \end{array} $		$egin{array}{llllllllllllllllllllllllllllllllllll$	
		$\Pi(x_{BL}^{0}, x_{BR}^{0}). \Pi x_{B*}^{1} : X_{1}(x_{BL}^{0}, x_{BR}^{0}).$	<i>.</i>
+ coherences		$X_1(x_{LL}^0, x_{RL}^0) \times X_1(x_{LR}^0, x_{RR}^0) \to HSet$ $r_1 : \Pi(x_L^0, x_R^0) : (X_0 \times X_0) . \Pi x^1 : X_1(x_L^0, x_R^0).$	(squares)
		$\begin{array}{c} \mathbf{Y}_{1} &: \ \mathbf{\Pi}(x_{L}, x_{R}) : (\mathbf{X}_{0} \land \mathbf{X}_{0}), \mathbf{\Pi}x &: \mathbf{X}_{1}(x_{L}, x_{R}), \\ & X_{2}((x_{L}^{0}, x_{L}^{0}), r_{0}(x_{L}^{0}), (x_{R}^{0}, x_{R}^{0}), r_{0}(x_{R}^{0}), (x^{1}, x^{1})) \end{array}$	
÷		÷	

The added degeneracy is *parametric*: in the binary case, it gives a standard cubical degeneracy; in the unary case, it gives a ParamTT-like degeneracy and *not* a simplicial degeneracy

First, our degeneracy implies a distinguished point $r_{-1}(a)$ for any $a : X_{-1}$. Then:



17

Adding a degeneracy

For any $(X_0, X_1, ...)$: ν Set, we define a stream of degeneracies:

$$\nu \operatorname{reflSet}(X_0, X_1, \ldots) \triangleq \\ \Sigma r_0 : \Pi d : \operatorname{fullframe}^0 \Pi x : X_0(d) \cdot X_1(\operatorname{refl}_{\operatorname{fullframe}}^0(d), \lambda \epsilon \cdot x) \cdot \\ \Sigma r_1 : \Pi d : \operatorname{fullframe}^1(X_0) \cdot \Pi x : X_1(d) \cdot X_2(\operatorname{refl}_{\operatorname{fullframe}}^1(r_0)(d), \lambda \epsilon \cdot x) \cdot \\ \Sigma r_2 : \Pi d : \operatorname{fullframe}^2(X_0, X_1) \cdot \Pi x : X_2(d) \cdot X_3(\operatorname{refl}_{\operatorname{fullframe}}^2(r_0, r_1)(d), \lambda \epsilon \cdot x) \cdot \\ \cdots$$

where

$$\mathsf{refl}^n_{\mathsf{fullframe}}(r_{-1}, ..., r_{n-1}) : \mathsf{fullframe}^n(X_{-1}, ..., X_{n-1}) \to \mathsf{frame}^{n+1, n}(X_{-1}, ..., X_n)$$

computes the n first layers of the border of $r_n(d)(x),$ knowing that the last layer is made of ν times x itself, so that

$$(\mathsf{refl}_{\mathsf{fullframe}}^{n}(r_{-1},...,r_{n-1})(d),\lambda\epsilon.x):\mathsf{frame}^{n+1,n+1}(X_{-1},...,X_{n})$$

is a full frame.

Adding a degeneracy

On the way, we need two coherence conditions:

$$\begin{aligned} & \mathsf{idrestrrefl}_{\mathsf{frame},\epsilon}^n(r_{-1},...,r_{n-1}) \ (d:\mathsf{fullframe}^n(X_0,...,X_{n-1})) : \\ & \mathsf{restr}_{\mathsf{frame},\epsilon,n}^{n,n}(\mathsf{refl}_{\mathsf{fullframe}}^n(r_{-1},...,r_{n-1})(d)) = d \end{aligned}$$

$$\begin{aligned} & \mathsf{cohrestrrefl}_{\mathsf{frame},\epsilon,p$$

Summary

- Machine-checked parametricity-based definition of *indexed* presheaves
- Uniformly represents simplicial and cubical sets
- Addition of one (parametric) degeneracy in the last direction completed
- More compact definition in progress, relying on finer-grain dependencies between the different components of the construction