

1631

Yet another homotopy group, yet another Brunerie number

Glasgow, Scotland

Table of Contents

1 Introduction

② The mathematics

3 A new Brunerie number

4 Trying anyways

- ... also known by its street name $\pi_5(\mathbb{S}^3)$
- ... $\pi_5(\mathbb{S}^3) = \{5 \text{-dimensional loops on the 3-sphere}\}$

3 / 20

- ... also known by its street name $\pi_5(\mathbb{S}^3)$
- ... $\pi_5(\mathbb{S}^3) = \{5 \text{-dimensional loops on the 3-sphere}\}$

Previous work on homotopy groups of spheres in this setting:

- The HoTT Book (2013): $\pi_n(\mathbb{S}^n) \cong \mathbb{Z}$
- Brunerie (2016): $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$

- ... also known by its street name $\pi_5(\mathbb{S}^3)$
- ... $\pi_5(\mathbb{S}^3) = \{5 \text{-dimensional loops on the 3-sphere}\}$

Previous work on homotopy groups of spheres in this setting:

- The HoTT Book (2013): $\pi_n(\mathbb{S}^n) \cong \mathbb{Z}$
- Brunerie (2016): $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$

igstarrow This talk: $\pi_5(\mathbb{S}^3)\cong\mathbb{Z}/2\mathbb{Z}$

- ... also known by its street name $\pi_5(\mathbb{S}^3)$
- ... $\pi_5(\mathbb{S}^3) = \{5 \text{-dimensional loops on the 3-sphere}\}$

Previous work on homotopy groups of spheres in this setting:

- The HoTT Book (2013): $\pi_n(\mathbb{S}^n) \cong \mathbb{Z}$
- Brunerie (2016): $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$

🐉 Why do we care?

*

	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π_{11}
\mathbb{S}^1	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0
\mathbb{S}^2	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2
\mathbb{S}^3	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2
\mathbb{S}^4	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z} imes \mathbb{Z}_{12}$	\mathbb{Z}^2	\mathbb{Z}^2	$\mathbb{Z}_{24}\times\mathbb{Z}_3$	\mathbb{Z}_{15}
\mathbb{S}^{5}	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2
\mathbb{S}^{6}	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	\mathbb{Z}
\$ ⁷	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0
S ⁸	0	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}

*

	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π_{11}
\mathbb{S}^1	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0
\mathbb{S}^2	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2
\mathbb{S}^3	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2
\mathbb{S}^4	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z} imes \mathbb{Z}_{12}$	\mathbb{Z}^2	\mathbb{Z}^2	$\mathbb{Z}_{24}\times\mathbb{Z}_3$	\mathbb{Z}_{15}
\mathbb{S}^{5}	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2
\mathbb{S}^{6}	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	\mathbb{Z}
\$ ⁷	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0
S ⁸	0	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}
									π_0^s		

*

	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π_{11}
\mathbb{S}^1	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0
\mathbb{S}^2	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2
\mathbb{S}^3	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2
\mathbb{S}^4	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z} imes \mathbb{Z}_{12}$	\mathbb{Z}^2	\mathbb{Z}^2	$\mathbb{Z}_{24} imes \mathbb{Z}_3$	\mathbb{Z}_{15}
\mathbb{S}^{5}	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2
\mathbb{S}^{6}	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	\mathbb{Z}
\$ ⁷	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0
S ⁸	0	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}
									π_0^s	π_1^s	

*

	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π_{11}
\mathbb{S}^1	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0
\mathbb{S}^2	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2
\mathbb{S}^3	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2
\mathbb{S}^4	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z} imes \mathbb{Z}_{12}$	\mathbb{Z}^2	\mathbb{Z}^2	$\mathbb{Z}_{24} imes \mathbb{Z}_3$	\mathbb{Z}_{15}
\mathbb{S}^{5}	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2
\mathbb{S}^{6}	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	\mathbb{Z}
\$ ⁷	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0
S ⁸	0	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}
									π_0^s	π_1^s	π_2^s

 $\overset{\text{(S4)}}{\Rightarrow}$ We don't... We actually care about $\pi_6(\mathbb{S}^4)$, the second stable homotopy groups of spheres

	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π_{11}
\mathbb{S}^1	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0
\mathbb{S}^2	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2
\mathbb{S}^3	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2
\mathbb{S}^4	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z} imes \mathbb{Z}_{12}$	\mathbb{Z}^2	\mathbb{Z}^2	$\mathbb{Z}_{24} imes \mathbb{Z}_3$	\mathbb{Z}_{15}
\mathbb{S}^{5}	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2
\mathbb{S}^{6}	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	\mathbb{Z}
\$ ⁷	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0
S ⁸	0	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}
									π_0^s	π_1^s	π_2^s

It turns out that $\pi_5(\mathbb{S}^3) \cong \pi_6(\mathbb{S}^4)^*$ and the former is easier to compute directly

*Follows from the quaternionic Hopf fibration (Buchholtz & Rijke, 18)

- 1. Show that $\pi_4(\mathbb{S}^3)\cong\mathbb{Z}/n\mathbb{Z}$ for some $n:\mathbb{Z}$
- 2. Show that |n| = 2

1. Show that
$$\pi_4(\mathbb{S}^3)\cong\mathbb{Z}/n\mathbb{Z}$$
 for some $n:\mathbb{Z}$

2. Show that |n| = 2

- **Problem:** the number n – often called the Brunerie number – is simply too complicated

1. Show that
$$\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/n\mathbb{Z}$$
 for some $n:\mathbb{Z}$

2. Show that |n| = 2

- **Problem:** the number n – often called the *Brunerie number* – is simply too complicated

Our proof follows the same strategy – and we end up with a new 'Brunerie number', i.e. a number *n* s.t. $\pi_5(\mathbb{S}^3) \cong \mathbb{Z}/n\mathbb{Z}$ is difficult(?) to compute

1. Show that
$$\pi_4(\mathbb{S}^3)\cong\mathbb{Z}/n\mathbb{Z}$$
 for some $n:\mathbb{Z}$

2. Show that |n| = 2

- **Problem:** the number n often called the *Brunerie number* is simply too complicated
- Our proof follows the same strategy and we end up with a new 'Brunerie number', i.e. a number *n* s.t. $\pi_5(\mathbb{S}^3) \cong \mathbb{Z}/n\mathbb{Z}$ is difficult(?) to compute

More on this soon – first, let's see what this n comes from

Table of Contents

Introduction

2 The mathematics

3 A new Brunerie number

4 Trying anyways

Dhe only higher inductive types we'll need in this talk are cofibres:

The only higher inductive types we'll need in this talk are cofibres:

Honourable mention: The suspension of a type A, denoted ΣA , is simply the cofibre of $A \rightarrow \mathbb{1}$

The only higher inductive types we'll need in this talk are cofibres:

Honourable mention: The suspension of a type A, denoted ΣA, is simply the cofibre of A → 1
In particular, the *n*-sphere, Sⁿ, is defined as the (n + 1)-fold suspension of the empty

type. That is:

$$\mathbb{S}^n := \Sigma^{n+1} \bot$$

The only higher inductive types we'll need in this talk are cofibres:

We have a state of the suspension of a type A, denoted ΣA, is simply the cofibre of A → 1
In particular, the *n*-sphere, Sⁿ, is defined as the (n + 1)-fold suspension of the empty type. That is:

$$\mathbb{S}^n := \Sigma^{n+1} \bot$$

With this, we can define the nth homotopy group of a pointed type A. We set

$$\pi_n(A) := \| \mathbb{S}^n \to_\star A \|_0$$

The pinch map

‡ For any map $f : A \to B$, there is a function pinch $f : C_f \to \Sigma A$ defined as follows

$$C_f$$
 = Pushout of: 1 $\leftarrow A \xrightarrow{f} B$

$$\Sigma A =$$
Pushout of: $1 \leftarrow A \longrightarrow 1$

The pinch map

 ${\not R}$ For any map $f: A \to B$, there is a function pinch $f: C_f \to \Sigma A$ defined as follows

$$C_{f} = \text{Pushout of:} \qquad 1 \longleftarrow A \xrightarrow{f} B$$
$$\downarrow \qquad \downarrow \text{id} \qquad \downarrow$$
$$\Sigma A = \text{Pushout of:} \qquad 1 \longleftarrow A \longrightarrow 1$$

The technical content of our proof is really concerned with the long exact sequence of pinch_f:

$$\cdots \to \pi_{n+1}(\Sigma B) \to \pi_n(\mathsf{fib}_{\mathsf{pinch}_f}) \to \pi_n(C_f) \to \pi_n(\Sigma B) \to \pi_{n-1}(\mathsf{fib}_{\mathsf{pinch}_f}) \to \dots$$

The pinch map

rightarrow For any map $f: A \rightarrow B$, there is a function pinch $_f: C_f \rightarrow \Sigma A$ defined as follows

$$C_{f} = \text{Pushout of:} \qquad 1 \longleftarrow A \xrightarrow{f} B$$
$$\downarrow \qquad \downarrow \text{id} \qquad \downarrow$$
$$\Sigma A = \text{Pushout of:} \qquad 1 \longleftarrow A \longrightarrow 1$$

The technical content of our proof is really concerned with the long exact sequence of pinch_f:

$$\cdots \to \pi_{n+1}(\Sigma B) \to \pi_n(\mathsf{fib}_{\mathsf{pinch}_f}) \to \pi_n(C_f) \to \pi_n(\Sigma B) \to \pi_{n-1}(\mathsf{fib}_{\mathsf{pinch}_f}) \to \dots$$

Question answered by our technical theorem: when can we swap $\pi_n(\text{fib}_{\text{pinch}_f})$ for something nicer?

- Answer: when f is a Whitehead product

Whitehead products

Fact

Given pointed functions $f : \mathbb{S}^n \to_* A$ and $g : \mathbb{S}^m \to_* A$, there is a function $[f,g] : \mathbb{S}^{n+m+1} \to_* A$ called the *Whitehead product* of f and g.

 $\overset{\text{\tiny{(1)}}}{\Rightarrow}$ Can be viewed as a bilinear multiplication $[-,-]:\pi_n(\mathcal{A}) imes\pi_m(\mathcal{A}) o\pi_{n+m+1}(\mathcal{A})$

Whitehead products

Fact

Given pointed functions $f : \mathbb{S}^n \to_{\star} A$ and $g : \mathbb{S}^m \to_{\star} A$, there is a function $[f,g] : \mathbb{S}^{n+m+1} \to_{\star} A$ called the *Whitehead product* of f and g.

***** Can be viewed as a bilinear multiplication $[-, -] : \pi_n(A) \times \pi_m(A) \to \pi_{n+m+1}(A)$ ***** The original Brunerie number was defined in terms of Whitehead products

Brunerie's theorem (2016)

Let η denote the canonical generator of $\underline{\pi_3(\mathbb{S}^2)}$. We have that $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/n\mathbb{Z}$ for the $n : \mathbb{Z}$ satisfying $[\mathrm{id}_{\mathbb{S}^2}, \mathrm{id}_{\mathbb{S}^2}] = n \cdot \eta$.

We will prove an almost identical result for $\pi_5(\mathbb{S}^3)$

The main technical theorem

🖄 The key technical result:

Main technical theorem (demo version)

Let $f : \pi_n(\mathbb{S}^m)$. We have $\pi_{2n}(C_{[\operatorname{id}_{\mathbb{S}^m}, f]}) \cong \pi_{2n}(\operatorname{fib}_{\operatorname{pinch}_f})$.

The main technical theorem

🏂 The key technical result:

Main technical theorem (demo version)

Let $f : \pi_n(\mathbb{S}^m)$. We have $\pi_{2n}(C_{[\mathrm{id}_{\mathbb{S}^m}, f]}) \cong \pi_{2n}(\mathrm{fib}_{\mathrm{pinch}_f})$.

攀 (For those who care, here's the full result)

Main technical theorem (full version for generalised Whitehead products)

Let A be an (a-1)-connected pointed type, B be any pointed type and let $f : \Sigma A \to_{\star} \Sigma B$. In this case, there is a 2*a*-connected map $\gamma : C_{[\operatorname{id}_{\Sigma B}, f]} \to \operatorname{fib}_{\operatorname{pinch}_{f}}$.

The main technical theorem

🏂 The key technical result:

Main technical theorem (demo version)

Let $f : \pi_n(\mathbb{S}^m)$. We have $\pi_{2n}(C_{[\operatorname{id}_{\mathbb{S}^m}, f]}) \cong \pi_{2n}(\operatorname{fib}_{\operatorname{pinch}_f})$.

礬 (For those who care, here's the full result)

Main technical theorem (full version for generalised Whitehead products)

Let A be an (a-1)-connected pointed type, B be any pointed type and let $f : \Sigma A \to_{\star} \Sigma B$. In this case, there is a 2*a*-connected map $\gamma : C_{[id_{\Sigma B}, f]} \to fib_{pinch_f}$.

We will apply the lemma in the case when $f = [\mathsf{id}_{\mathbb{S}^2}, \mathsf{id}_{\mathbb{S}^2}] : \mathbb{S}^3 o \mathbb{S}^2$

 $\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathcal{C}_{[\mathsf{id}_{\mathbb{S}^{2}}, f]}) \longrightarrow \pi_{4}(\mathcal{C}_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(\mathcal{C}_{f})$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathcal{C}_{[\mathrm{id}_{\mathbb{S}^{2}}, f]}) \longrightarrow \pi_{4}(\mathcal{C}_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathrm{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(\mathcal{C}_{f})$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathbb{S}^{2}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(C_{[\mathsf{id}_{\mathbb{S}^{2}}, f]}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathbb{S}^{2}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$$

 $\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathbb{S}^{2}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathbb{S}^{2}) \longrightarrow \pi_{3}(C_{f})$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(C_{[\mathsf{id}_{\mathbb{S}^{2}}, f]}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathbb{S}^{2}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathbb{S}^{2}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathbb{S}^{2}) \longrightarrow \pi_{3}(C_{f})$$

 $\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathbb{S}^{2}) \longrightarrow \pi_{5}(\mathbb{S}^{3}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathbb{S}^{2}) \longrightarrow \pi_{4}(\mathbb{S}^{3})$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(C_{[\mathsf{id}_{\mathbb{S}^{2}}, f]}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathbb{S}^{2}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$$

$$\pi_5(\mathbb{S}^4) \longrightarrow \pi_4(\mathbb{S}^2) \longrightarrow \pi_4(C_f) \longrightarrow \pi_4(\mathbb{S}^4) \longrightarrow \pi_3(\mathbb{S}^2) \longrightarrow \pi_3(C_f)$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathbb{S}^{2}) \longrightarrow \pi_{5}(\mathbb{S}^{3}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathbb{S}^{2}) \longrightarrow \pi_{4}(\mathbb{S}^{3})$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(C_{[\mathsf{id}_{\mathbb{S}^{2}}, f]}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathbb{S}^{2}) \longrightarrow \pi_{4}(C_{f}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathsf{fib}_{\mathsf{pinch}_{f}}) \longrightarrow \pi_{3}(C_{f})$$

$$\pi_5(\mathbb{S}^4) \longrightarrow \pi_4(\mathbb{S}^2) \longrightarrow \pi_4(C_f) \longrightarrow \pi_4(\mathbb{S}^4) \longrightarrow \pi_3(\mathbb{S}^2) \longrightarrow \pi_3(C_f)$$

$$\pi_{5}(\mathbb{S}^{4}) \longrightarrow \pi_{4}(\mathbb{S}^{2}) \longrightarrow \pi_{5}(\mathbb{S}^{3}) \longrightarrow \pi_{4}(\mathbb{S}^{4}) \longrightarrow \pi_{3}(\mathbb{S}^{2}) \longrightarrow \pi_{4}(\mathbb{S}^{3})$$

 $\mathbb{Z}/2\mathbb{Z} \xrightarrow{d} \mathbb{Z}/2\mathbb{Z} \xrightarrow{d} \pi_5(\mathbb{S}^3) \xrightarrow{} \mathbb{Z} \xrightarrow{} \mathbb{Z}/2\mathbb{Z}$

$$\mathbb{Z}/2\mathbb{Z} \xrightarrow{\quad d \quad} \mathbb{Z}/2\mathbb{Z} \xrightarrow{\quad d \quad} \pi_5(\mathbb{S}^3) \xrightarrow{\quad } \mathbb{Z} \xrightarrow{\quad } \mathbb{Z} \xrightarrow{\quad} \mathbb{Z}/2\mathbb{Z}$$

...and after remembering you've taken some undergraduate algebra classes, you realise that it implies that

$$\pi_5(\mathbb{S}^3) \cong \mathbb{Z}/n\mathbb{Z}$$
 where $n = 2 - d(1)$

$$\mathbb{Z}/2\mathbb{Z} \xrightarrow{\quad d \quad} \mathbb{Z}/2\mathbb{Z} \xrightarrow{\quad d \quad} \pi_5(\mathbb{S}^3) \xrightarrow{\quad } \mathbb{Z} \xrightarrow{\quad } \mathbb{Z}/2\mathbb{Z}$$

…and after remembering you've taken some undergraduate algebra classes, you realise that it implies that

$$\pi_5(\mathbb{S}^3)\cong\mathbb{Z}/n\mathbb{Z}$$
 where $n=2-d(1)$

🜞 So, we just need to check that d(1)=0

The number d(1) is obtained by applying the isomorphism $\pi_4(\mathbb{S}^2) \cong \mathbb{Z}/2\mathbb{Z}$ to the composite map $\mathbb{S}^4 \xrightarrow{\Sigma\eta} \mathbb{S}^3 \xrightarrow{[id_{\mathbb{S}^2}, id_{\mathbb{S}^2}]} \mathbb{S}^2$ (viewed as an element of $\pi_4(\mathbb{S}^2)$)

Hence, it's enough to show that

$$[\mathsf{id}_2,\mathsf{id}_2]\circ\Sigma\eta=0$$

The number d(1) is obtained by applying the isomorphism $\pi_4(\mathbb{S}^2) \cong \mathbb{Z}/2\mathbb{Z}$ to the composite map $\mathbb{S}^4 \xrightarrow{\Sigma\eta} \mathbb{S}^3 \xrightarrow{[\mathrm{id}_{\mathbb{S}^2}, \mathrm{id}_{\mathbb{S}^2}]} \mathbb{S}^2$ (viewed as an element of $\pi_4(\mathbb{S}^2)$)

🛸 Hence, it's enough to show that

$$\begin{array}{l} [\operatorname{id}_2,\operatorname{id}_2] \circ \Sigma \eta = 0 \\ (-) \circ \Sigma \eta : \pi_3(\mathbb{S}^2) \to \pi_4(\mathbb{S}^2) \text{ is a homomorphism} \end{array}$$

. . .

The number d(1) is obtained by applying the isomorphism $\pi_4(\mathbb{S}^2) \cong \mathbb{Z}/2\mathbb{Z}$ to the composite map $\mathbb{S}^4 \xrightarrow{\Sigma\eta} \mathbb{S}^3 \xrightarrow{[\mathrm{id}_{\mathbb{S}^2}, \mathrm{id}_{\mathbb{S}^2}]} \mathbb{S}^2$ (viewed as an element of $\pi_4(\mathbb{S}^2)$)

🛸 Hence, it's enough to show that

$$\frac{[\mathrm{id}_2, \mathrm{id}_2] \circ \Sigma \eta = 0}{(-) \circ \Sigma \eta : \pi_3(\mathbb{S}^2) \to \pi_4(\mathbb{S}^2)} \text{ is a homomorphism}$$

But is this true?

. . .

The number d(1) is obtained by applying the isomorphism $\pi_4(\mathbb{S}^2) \cong \mathbb{Z}/2\mathbb{Z}$ to the composite map $\mathbb{S}^4 \xrightarrow{\Sigma\eta} \mathbb{S}^3 \xrightarrow{[\mathrm{id}_{\mathbb{S}^2}, \mathrm{id}_{\mathbb{S}^2}]} \mathbb{S}^2$ (viewed as an element of $\pi_4(\mathbb{S}^2)$)

🗱 Hence, it's enough to show that

$$\begin{array}{l} [\mathrm{id}_2,\mathrm{id}_2] \circ \Sigma \eta = 0 \\ (-) \circ \Sigma \eta : \pi_3(\mathbb{S}^2) \to \pi_4(\mathbb{S}^2) \text{ is a homomorphism} \\ \mathrm{But \ is \ this \ true?} \end{array}$$

Nay, for composition $(-) \circ f: \pi_m(A) \to \pi_n(A)$ is not a homomorphism for arbitrary $f: \pi_n(\mathbb{S}^m)$ - thus spoke Gray (1973)

Jack Ljungström

The number d(1) is obtained by applying the isomorphism $\pi_4(\mathbb{S}^2) \cong \mathbb{Z}/2\mathbb{Z}$ to the composite map $\mathbb{S}^4 \xrightarrow{\Sigma\eta} \mathbb{S}^3 \xrightarrow{[\mathrm{id}_{\mathbb{S}^2}, \mathrm{id}_{\mathbb{S}^2}]} \mathbb{S}^2$ (viewed as an element of $\pi_4(\mathbb{S}^2)$)

$$\begin{array}{l} [\operatorname{id}_2,\operatorname{id}_2]\circ\Sigma\eta=0\\ (-)\circ\Sigma\eta:\pi_3(\mathbb{S}^2)\to\pi_4(\mathbb{S}^2) \text{ is a homomorphism}\\ \text{But is this true?} \end{array}$$

蓉

. . .

Idea: let's stick this number d(1) into Cubical Agda instead – just need to check if it computes to 0

Nay, for composition $(-) \circ f: \pi_m(A) \to \pi_n(A)$ is not a homomorphism for arbitrary $f: \pi_n(\mathbb{S}^m)$ - thus spoke Gray (1973)

The number d(1) is obtained by applying the isomorphism $\pi_4(\mathbb{S}^2) \cong \mathbb{Z}/2\mathbb{Z}$ to the composite map $\mathbb{S}^4 \xrightarrow{\Sigma\eta} \mathbb{S}^3 \xrightarrow{[\mathrm{id}_{\mathbb{S}^2}, \mathrm{id}_{\mathbb{S}^2}]} \mathbb{S}^2$ (viewed as an element of $\pi_4(\mathbb{S}^2)$)

🛸 Hence, it's enough to show that

$$\begin{array}{l} [\mathrm{id}_2,\mathrm{id}_2]\circ\Sigma\eta=0\\ (-)\circ\Sigma\eta:\pi_3(\mathbb{S}^2)\to\pi_4(\mathbb{S}^2) \text{ is a homomorphism}\\ \mathrm{But \ is \ this \ true?} \end{array}$$

. . .

Idea: let's stick this number d(1) into Cubical Agda instead – just need to check if it computes to 0

- It doesn't

Nay, for composition $(-) \circ f: \pi_m(A) \to \pi_n(A)$ is not a homomorphism for arbitrary $f:\pi_n(\mathbb{S}^m)$ - thus spoke Gray (1973)

Table of Contents

Introduction

2 The mathematics

A new Brunerie number

4 Trying anyways

Normalising d(1)

What is actually happening here? The isomorphism $\pi_4(\mathbb{S}^2) \cong \mathbb{Z}/2\mathbb{Z}$ appearing in the definition of d(1) consists of two problem makers:

$$\pi_4(\mathbb{S}^2) \longrightarrow \pi_4(\mathbb{S}^3) \longrightarrow \mathbb{Z}/2\mathbb{Z}$$

Normalising d(1)

What is actually happening here? The isomorphism $\pi_4(\mathbb{S}^2) \cong \mathbb{Z}/2\mathbb{Z}$ appearing in the definition of d(1) consists of two problem makers:

$$\pi_4(\mathbb{S}^2) \longrightarrow \pi_4(\mathbb{S}^3) \longrightarrow \pi_2/2\mathbb{Z}$$

Bad guy 1

- This is an instance of a general isomorphism $\pi_n(\mathbb{S}^2) \cong \pi_n(\mathbb{S}^3)...$
 - ... the culprit in the computation of the original Brunerie number
- At least as difficult as computing the original Brunerie number

Normalising d(1)

What is actually happening here? The isomorphism $\pi_4(\mathbb{S}^2) \cong \mathbb{Z}/2\mathbb{Z}$ appearing in the definition of d(1) consists of two problem makers:

$$\pi_4(\mathbb{S}^2) \longrightarrow \pi_4(\mathbb{S}^3) \longrightarrow \mathbb{Z}/2\mathbb{Z}$$

Bad guy 1

- This is an instance of a general isomorphism $\pi_n(\mathbb{S}^2) \cong \pi_n(\mathbb{S}^3)...$
 - ... the culprit in the computation of the original Brunerie number
- At least as difficult as computing the original Brunerie number

Bad guy 2

- This isomorphism is implicitly constructed in terms of *the proof that* the original Brunerie number has absolute value 2.
- At least as difficult as computing the original Brunerie number

Table of Contents

Introduction

② The mathematics

3 A new Brunerie number

Trying anyways

- Close to the revision deadline for TYPES2025, we decided to give the pen-and-paper proof another shot
- Suddenly, the resistance had changed...

Recall: we would be done if we could show that $(-) \circ f : \pi_m(A) \to \pi_n(A)$ is a homomorphism for $f : \pi_n(\mathbb{S}^m)$

- In our case:
$$A=\mathbb{S}^2$$
, $n=4$, $m=3$ and $f=\Sigma\eta$

🗱 Although the general statement is false, the special case we need it not...

Recall: we would be done if we could show that $(-) \circ f : \pi_m(A) \to \pi_n(A)$ is a homomorphism for $f : \pi_n(\mathbb{S}^m)$

- In our case:
$$A=\mathbb{S}^2$$
, $n=$ 4, $m=$ 3 and $f=\Sigma\eta$

Although the general statement is false, the special case we need it not...

Proposition

Given
$$f : \pi_{n-1}(\mathbb{S}^{m-1})$$
, the map $(-) \circ \Sigma f : \pi_m(A) \to \pi_n(A)$ is a homomorphism

Recall: we would be done if we could show that $(-) \circ f : \pi_m(A) \to \pi_n(A)$ is a homomorphism for $f : \pi_n(\mathbb{S}^m)$

- In our case:
$$A=\mathbb{S}^2$$
, $n=$ 4, $m=$ 3 and $f=\Sigma\eta$

Although the general statement is false, the special case we need it not...

Proposition

Given
$$f: \pi_{n-1}(\mathbb{S}^{m-1})$$
, the map $(-) \circ \Sigma f: \pi_m(A) \to \pi_n(A)$ is a homomorphism

Corollary

$$d(1) = 0$$

Recall: we would be done if we could show that $(-) \circ f : \pi_m(A) \to \pi_n(A)$ is a homomorphism for $f : \pi_n(\mathbb{S}^m)$

- In our case:
$$A=\mathbb{S}^2$$
, $n=$ 4, $m=$ 3 and $f=\Sigma\eta$

Although the general statement is false, the special case we need it not...

Proposition

Given
$$f: \pi_{n-1}(\mathbb{S}^{m-1})$$
, the map $(-) \circ \Sigma f: \pi_m(A) \to \pi_n(A)$ is a homomorphism

Corollary

d(1) = 0

So, in a somewhat anti-climactic way, we have shown that $\pi_5(\mathbb{S}^3) \cong \mathbb{Z}/2$ $\implies \pi_{n+2}(\mathbb{S}^n) \cong \mathbb{Z}/2$ for $n \ge 3$

Axel Ljungström (Stockholm University) Yet another homotopy group, yet another Brunerie ...

🖞 Just like Brunerie, we proved that

- 1. Our homotopy group is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ for some constructively defined *n*
- 2. This n is equal to 2.

Just like Brunerie, we proved that

- 1. Our homotopy group is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ for some constructively defined *n*
- 2. This n is equal to 2.

And just like with Brunerie's original number, the value of *n*...

1. ...first seemed rather difficult to compute mathematically,

Just like Brunerie, we proved that

- 1. Our homotopy group is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ for some constructively defined *n*
- 2. This n is equal to 2.

And just like with Brunerie's original number, the value of *n*...

- 1. ...first seemed rather difficult to compute mathematically,
- 2. ...then seemed even harder to compute digitally in a proof assistant,

Just like Brunerie, we proved that

- 1. Our homotopy group is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ for some constructively defined *n*
- 2. This n is equal to 2.

And just like with Brunerie's original number, the value of *n*...

- 1. ...first seemed rather difficult to compute mathematically,
- 2. ...then seemed even harder to compute digitally in a proof assistant,
- 3. ...but actually turned out to be really easy to compute mathematically (L. & Mörtberg, 24).

Just like Brunerie, we proved that

- 1. Our homotopy group is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ for some constructively defined *n*
- 2. This n is equal to 2.

And just like with Brunerie's original number, the value of *n*...

- 1. ...first seemed rather difficult to compute mathematically,
- 2. ...then seemed even harder to compute digitally in a proof assistant,
- 3. ...but actually turned out to be really easy to compute mathematically (L. & Mörtberg, 24).

Stay tuned for $\pi_8(\mathbb{S}^5) = \mathbb{Z}/n\mathbb{Z}$ (maybe this *n* will be more exciting)

Thanks for listening!

References

- [1] Guillaume Brunerie. "On the homotopy groups of spheres in homotopy type theory". PhD thesis. Université Nice Sophia Antipolis, 2016. arXiv: 1606.05916.
- [2] Brayton Gray. "On the Homotopy Groups of Mapping Cones". In: Proceedings of the London Mathematical Society s3-26.3 (Apr. 1973), pp. 497–520.
- [3] Brayton Gray. "Filtering the fiber of the pinch map". In: *Groups, homotopy and configuration spaces* (*Tokyo 2005*). Mathematical Sciences Publishers, Feb. 2008, pp. 203–227.
- [4] Ulrik Buchholtz and Egbert Rijke. "The Cayley-Dickson Construction in Homotopy Type Theory". In: *Higher Structures* 2.1 (2018), pp. 30–41.
- [5] Axel Ljungström. Some properties of Whitehead products. Extended abstract at Workshop on Homotopy Type Theory/Univalent Foundations (HoTT/UF 2025). 2025. URL: https://hott-uf.github.io/2025/abstracts/HoTTUF_2025_paper_23.pdf.
- [6] Sephora. Best Products For Whiteheads. 2025. URL: https://www.sephora.com/buy/best-products-for-whiteheads.
- [7] Axel Ljungström and Anders Mörtberg. *Formalising and Computing the Fourth Homotopy Group of the* 3-*Sphere in Cubical Agda*. 2024. arXiv: 2302.00151.

Axel Ljungström (Stockholm University)

Yet another homotopy group, yet another Brunerie ...