An Inductive Universe for Setoids

The Setoid Model

Hofmann's PhD thesis: two translations from CC to CC

$$\begin{array}{ccc} \Gamma \vdash t : A & \rightsquigarrow & \llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket : \llbracket A \rrbracket \\ \Gamma \vdash t \equiv u : A & \rightsquigarrow & \llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket \equiv \llbracket u \rrbracket : \llbracket A \rrbracket \end{array}$$

They validate

- function extensionality
- proposition extensionality
- quotient types

The Setoid Model

Hofmann's PhD thesis: two translations from CC to CC

$$\begin{array}{ccc} \Gamma \vdash t : A & \rightsquigarrow & \llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket : \llbracket A \rrbracket \\ \Gamma \vdash t \equiv u : A & \rightsquigarrow & \llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket \equiv \llbracket u \rrbracket : \llbracket A \rrbracket \end{array}$$

They validate

- function extensionality
- proposition extensionality
- quotient types

BUT:

- ► First model: no true dependent types
- Second model: missing definitional equations

The Setoid Model, again

Altenkirch '99 adds definitional proof irrelevance

```
Setoid := {

A : Type

-\sim_A - : A \rightarrow A \rightarrow SProp

refl : x \sim_A x

sym : x \sim_A y \rightarrow y \sim_A x

trans : x \sim_A y \rightarrow y \sim_A z \rightarrow x \sim_A z

}
```

 \rightarrow true dependent types

The Setoid Model, again

Altenkirch '99 adds definitional proof irrelevance

```
Setoid := {

A : Type

-\sim_A - : A \rightarrow A \rightarrow SProp

refl : x \sim_A x

sym : x \sim_A y \rightarrow y \sim_A x

trans : x \sim_A y \rightarrow y \sim_A z \rightarrow x \sim_A z

}
```

- \rightarrow true dependent types
- + Universe of non-dependent types

An Inductive-Recursive Universe

Inductive U :≡ $\begin{vmatrix} N : \overline{U} \\ \Pi : (A : U) (P : ELA \to U) (P_e : a_{A \sim A} a' \to Pa \sim_{U} Pa') \to U \end{vmatrix}$ $E N \equiv \mathbb{N}$ $\mathsf{El} (\Pi \land P \mathrel{P_{\rho}}) \equiv (f : (a : \mathsf{El} \land) \to \mathsf{El} (P a))$ $\times (f_{\rho}: a \land \sim_{A} a' \rightarrow f a \land \rho_{\rho} \sim_{P a'} f a')$ $N \sim_{II} N$ _≡ T $\Pi A P P_{e} \sim_{II} \Pi B Q Q_{e} \equiv (A \sim_{II} B) \times (a_{A} \sim_{B} b \rightarrow P a \sim_{II} Q b)$ ≡ | $n \sim N m$ = (* inductive def of equality *) $\langle f, f_e \rangle \prod_{A \mid P \mid P_e} \neg \prod_{B \mid Q \mid Q_e} \langle g, g_e \rangle \equiv a_A \neg B b \rightarrow f a_{Pa} \neg Qb g b$ ≡ | <u>x ~ y</u>

Agda accepts it ___(יע)_/_

Agda accepts it $\neg ((\vee))_{/}$...actually, this is double ind-rec. No general theory for those AFAIK

Agda accepts it $\neg (\psi)_{/}$...actually, this is double ind-rec. No general theory for those AFAIK

Altenkirch, Boulier, Kaposi, Sattler and Sestini '21: we can do better

- Agda accepts it $\neg ((\vee))_{/}$...actually, this is double ind-rec. No general theory for those AFAIK
- Altenkirch, Boulier, Kaposi, Sattler and Sestini '21: we can do better
 - encoding as an inductive-inductive family

Agda accepts it $\neg (\neg) / \neg$...actually, this is double ind-rec. No general theory for those AFAIK

Altenkirch, Boulier, Kaposi, Sattler and Sestini '21: we can do better

- encoding as an inductive-inductive family
- encoding as an inductive family in a theory with a SProp-valued equality with large elimination

An Inductive Universe

Ι.

```
Inductive U :≡
 \begin{vmatrix} N : U \\ \Pi : (A : U) \\ (P : El A \to U) \\ (P_e : a_A \sim_A a' \to P a \sim_U P a') \to U \end{vmatrix} 
 El : U \rightarrow Type
 EIN ≡ N
\mathsf{El}(\Pi \land P \mathrel{P_{\rho}}) \equiv (f : (a : \mathsf{El} \land) \to \mathsf{El}(P a))
                                 \times (f_{e}: a_{A} \sim_{A} a' \rightarrow f a_{Pa} \sim_{Pa'} f a')
```

(* Definition of equalities *)

```
Inductive U :\equiv

N : U

\Pi : (A : U)

(P : El A \rightarrow U) \rightarrow U

El : U \rightarrow Type

El N \equiv \mathbb{N}

El (\Pi A P) \equiv (f : (a : El A) \rightarrow El (P a))

\times (f_e : a \xrightarrow{A \sim A} a' \rightarrow f a \xrightarrow{Pa \sim Pa'} f a')
```

(* Definition of equalities *)

```
Inductive U :\equiv

N : U

\Pi : (A : U) (A_{\pm} : A \rightarrow A \rightarrow \text{SProp})

(P : \text{El} A \rightarrow U) (P_{\pm} : Pa \rightarrow Pa' \rightarrow \text{SProp}) \rightarrow U

El : U \rightarrow \text{Type}

El N \equiv \mathbb{N}

El (\Pi A A_{\pm} P P_{\pm}) \equiv (f : (a : \text{El} A) \rightarrow \text{El} (Pa))

\times (f_e : A_{\pm} a a' \rightarrow P_{\pm} (f a) (f a'))
```

(* Definition of equalities *)

```
Inductive U :\equiv

N : U

\Pi : (A : U) (A_{\pm} : A \to A \to \text{SProp})

(P : \text{El} A \to U) (P_{\pm} : P a \to P a' \to \text{SProp}) \to U

\text{El} : U \to \text{Type}

\text{El} N \equiv \mathbb{N}

\text{El} (\Pi A A_{\pm} P P_{\pm}) \equiv (f : (a : \text{El} A) \to \text{El} (P a))

\times (f_e : A_{\pm} a a' \to P_{\pm} (f a) (f a'))
```

(* Definition of equalities *)

small IR

```
Inductive U :\equiv

N : U

\Pi : (A : U) (A_{\pm} : A \rightarrow A \rightarrow \text{SProp})

(P : \text{El} A \rightarrow U) (P_{\pm} : P a \rightarrow P a' \rightarrow \text{SProp}) \rightarrow U

El : U \rightarrow \text{Type}

El N \equiv \mathbb{N}

El (\Pi A A_{\pm} P P_{\pm}) \equiv (f : (a : \text{El} A) \rightarrow \text{El} (P a))

\times (f_e : A_{\pm} a a' \rightarrow P_{\pm} (f a) (f a'))
```

(* Definition of equalities without using $A_{=}$ or $P_{=}$ *)

```
Inductive U_e : U \rightarrow \text{Type} :=

\begin{bmatrix}
N_e : U_e N \\
\Pi_e : (A : U) (A_e : U_e A) \\
(P : \text{EL} A \rightarrow U) (P_e : (a : A) \rightarrow U_e (Pa)) \\
(P_{ext} : a_{A \sim_A} a' \rightarrow Pa \sim_U Pa') \\
\rightarrow U_e (\Pi A (-A \sim_A -) P (\lambda a a' - Pa \sim_U Pa' -))
\end{bmatrix}
```

```
Inductive U_e : U \rightarrow \text{Type} :=

\begin{bmatrix}
N_e : U_e N \\
\Pi_e : (A : U) (A_e : U_e A) \\
(P : \text{EL} A \rightarrow U) (P_e : (a : A) \rightarrow U_e (Pa)) \\
(P_{ext} : a_{A \sim_A} a' \rightarrow Pa \sim_U Pa') \\
\rightarrow U_e (\Pi A (\__A \sim_A \_) P (\lambda a a' . \__{Pa} \sim_{Pa'} \_))
\end{bmatrix}
```

 $U' = (A : U) \times (U_e A)$

Surprisingly enough, it works.

Surprisingly enough, it works.

We can get an inductive-recursive universe hierarchy with

► A type coercion operator,

Surprisingly enough, it works.

- ► A type coercion operator,
- ► ∑-types, W-types, Id-types,

Surprisingly enough, it works.

- ► A type coercion operator,
- ► ∑-types, W-types, Id-types,
- quotient types,

Surprisingly enough, it works.

- ► A type coercion operator,
- ► ∑-types, W-types, Id-types,
- quotient types,
- ▶ a universe of propositions with Propext,

Surprisingly enough, it works.

- ► A type coercion operator,
- ► ∑-types, W-types, Id-types,
- quotient types,
- ▶ a universe of propositions with Propext,
- ▶ universe embeddings.

Surprisingly enough, it works.

We can get an inductive-recursive universe hierarchy with

- ► A type coercion operator,
- ► ∑-types, W-types, Id-types,
- quotient types,
- ▶ a universe of propositions with Propext,
- ▶ universe embeddings.

Syntactic translation of MLTT+funext+propext+UIP+quotients into MLTT + SProp which preserves conversion.

||.

Proof-relevant setoids

Choice issues

When working with setoids, we encounter choice issues

Computational data and equality proofs live in different worlds \rightarrow difference between Σ and \exists

Choice issues

When working with setoids, we encounter choice issues

Computational data and equality proofs live in different worlds \rightarrow difference between Σ and \exists

$$(x : A) \to \Sigma(y : B) \cdot R \ a \ b \quad \to \quad \Sigma(f : A \to B) \cdot (x : A) \to R \ x \ f(x)$$
$$(x : A) \to \exists (y : B) \cdot R \ a \ b \quad \not \Rightarrow \quad \exists (f : A \to B) \cdot (x : A) \to R \ x \ f(x)$$

SProp Impredicative, definitionally proof-irrelevant, large elim only allowed for \bot

SPropImpredicative, definitionally proof-irrelevant, large elim onlyallowed for \bot $\star \star \star \Leftrightarrow \Leftrightarrow$

SProp

Impredicative, definitionally proof-irrelevant, large elim only allowed for \perp ****

Prop

Impredicative, morally proof-irrelevant, large elim only allowed for subsingletons (in particular, \perp , Id, Acc)

SProp

Impredicative, definitionally proof-irrelevant, large elim only allowed for \perp ****

Prop

Impredicative, morally proof-irrelevant, large elim only allowed for subsingletons (in particular, \perp , Id, Acc) $\star \star \star \star \star \star$

SProp

Impredicative, definitionally proof-irrelevant, large elim only allowed for \perp ***

Prop

Impredicative, morally proof-irrelevant, large elim only allowed for subsingletons (in particular, \bot , Id, Acc) $\star \star \star \star \star \star \star$

Impredicative Set

Impredicative, proof-relevant, weird, large elim only allowed for small inductives

SProp

Impredicative, definitionally proof-irrelevant, large elim only allowed for \perp ***

Prop

Impredicative, morally proof-irrelevant, large elim only allowed for subsingletons (in particular, \bot , Id, Acc) $\star \star \star \star \star \star \star$

Impredicative Set Impredicative, proof-relevant, weird, large elim only allowed for small inductives $\star \star \star \star \star \star \star$

SProp

Impredicative, definitionally proof-irrelevant, large elim only allowed for \perp ****

Prop

Impredicative, morally proof-irrelevant, large elim only allowed for subsingletons (in particular, \bot , Id, Acc) $\star \star \star \star \star \star$

Impredicative Set Impredicative, proof-relevant, weird, large elim only allowed for

small inductives $\star \star \star \star \star \star \star$

Type Predicative hierarchy, proof-relevant, large elim allowed

SProp

Impredicative, definitionally proof-irrelevant, large elim only allowed for \perp ***

Prop

Impredicative, morally proof-irrelevant, large elim only allowed for subsingletons (in particular, \bot , Id, Acc) $\star \star \star \star \star \star$

Impredicative Set Impredicative, proof-relevant, weird, large elim only allowed for small inductives ★★☆☆☆

Туре

Predicative hierarchy, proof-relevant, large elim allowed \star \star \star \star

Varieties of setoids

Varieties of setoids

SProp setoids Once you truncate something, it's lost for good \rightarrow no choice at all

Varieties of setoids

SProp setoids Once you truncate something, it's lost for good \rightarrow no choice at all

Prop setoids Large elimination of accessibility $\rightarrow \Sigma_1^0$ -choice

Using T_{ype} means that the truncation barely does anything: we simply change the equality relation to the trivial one.

This allows us to include some cool choice principles:

Using τ_{ype} means that the truncation barely does anything: we simply change the equality relation to the trivial one.

This allows us to include some cool choice principles:

Function comprehension / Unique choice Functional relations are the same thing as functions

Using τ_{ype} means that the truncation barely does anything: we simply change the equality relation to the trivial one.

This allows us to include some cool choice principles:

Function comprehension / Unique choice Functional relations are the same thing as functions

Countable and dependent choice Since the setoid equality on $\mathbb N$ coincides with the meta-equality, every function out of $\mathbb N$ is automatically a setoid morphism.

Using τ_{ype} means that the truncation barely does anything: we simply change the equality relation to the trivial one.

This allows us to include some cool choice principles:

Choice for higher order types For the setoid equality on $\mathbb{N} \to \mathbb{N}$ to coincide with the meta-equality, we need function extensionality in the meta...

Using τ_{ype} means that the truncation barely does anything: we simply change the equality relation to the trivial one.

This allows us to include some cool choice principles:

Choice for higher order types

For the setoid equality on $\mathbb{N} \to \mathbb{N}$ to coincide with the meta-equality, we need function extensionality in the meta...

What a coincidence! We have a translation that does just that Type-valued setoids inside the SProp-valued setoid model have choice for all Martin-Löf types

Using τ_{ype} means that the truncation barely does anything: we simply change the equality relation to the trivial one.

This allows us to include some cool choice principles:

Choice for higher order types

For the setoid equality on $\mathbb{N}\to\mathbb{N}$ to coincide with the meta-equality, we need function extensionality in the meta...

What a coincidence! We have a translation that does just that Type-valued setoids inside the SProp-valued setoid model have choice for all Martin-Löf types

(cf. Rathjen, Choice principles in constructive and classical set theories)

What about Impredicative Set?

idk, Impredicative-Set-valued setoids seem to sit somewhere inbetween Prop-valued and Type-valued setoids

Universes for proof-relevant setoids

Take the universe construction from earlier, and substitute SProp for your favourite universe. It just works!

A syntactic model?

Can we get the ultimate setoid translation out of this?

$$\begin{array}{ccc} \Gamma \vdash t : A & \rightsquigarrow & \llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket : \llbracket A \rrbracket \\ \Gamma \vdash t \equiv u : A & \rightsquigarrow & \llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket \equiv \llbracket u \rrbracket : \llbracket A \rrbracket \end{array}$$

A syntactic model?

Can we get the ultimate setoid translation out of this?

$$\begin{array}{ccc} \Gamma \vdash t : A & \rightsquigarrow & \llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket : \llbracket A \rrbracket \\ \Gamma \vdash t \equiv u : A & \rightsquigarrow & \llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket \equiv \llbracket u \rrbracket : \llbracket A \rrbracket \end{array}$$

Unfortunately, no 🙁

A syntactic model?

Can we get the ultimate setoid translation out of this?

 $\begin{array}{cccc} \Gamma \vdash t : A & \rightsquigarrow & \llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket & \vdots \llbracket A \rrbracket \\ \Gamma \vdash t \equiv u : A & \rightsquigarrow & \llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket \equiv \llbracket u \rrbracket : \llbracket A \rrbracket \end{array}$

Unfortunately, no 🙁

Substitution don't go under binders: $(\lambda x.t)[\sigma] \neq \lambda x.t[\sigma^{\uparrow}]$ Barras, Coquand, Huber, "A Generalization of Takeuti-Gandy Interpretation"

Questions

- Can we derive a systematic encoding of double induction-recursion from this hack?
- Can we find a nice-ish syntax for the "proof-relevant observational type theory" of this weak model?

