
Loïc Pujet 13 june 2025

An Inductive
Universe for

Setoids

The Setoid Model

Hofmann's PhD thesis: two translations from CC to CC

Γ ⊢ 𝑡 ∶ 𝐴 JΓK ⊢ J𝑡K ∶ J𝐴K
Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 JΓK ⊢ J𝑡K ≡ J𝑢K ∶ J𝐴K

They validate

▶ function extensionality

▶ proposition extensionality

▶ quotient types

BUT:

▶ First model: no true dependent types

▶ Second model: missing definitional equations

2

The Setoid Model

Hofmann's PhD thesis: two translations from CC to CC

Γ ⊢ 𝑡 ∶ 𝐴 JΓK ⊢ J𝑡K ∶ J𝐴K
Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 JΓK ⊢ J𝑡K ≡ J𝑢K ∶ J𝐴K

They validate

▶ function extensionality

▶ proposition extensionality

▶ quotient types

BUT:

▶ First model: no true dependent types

▶ Second model: missing definitional equations

2

The Setoid Model, again

Altenkirch '99 adds definitional proof irrelevance

Setoid ∶≡ {
𝐴 ∶ Type
_ ∼𝐴 _ ∶ 𝐴 → 𝐴 → SProp
refl ∶ 𝑥 ∼𝐴 𝑥
sym ∶ 𝑥 ∼𝐴 𝑦 → 𝑦 ∼𝐴 𝑥
trans ∶ 𝑥 ∼𝐴 𝑦 → 𝑦 ∼𝐴 𝑧 → 𝑥 ∼𝐴 𝑧
}

→ true dependent types

+ Universe of non-dependent types

3

The Setoid Model, again

Altenkirch '99 adds definitional proof irrelevance

Setoid ∶≡ {
𝐴 ∶ Type
_ ∼𝐴 _ ∶ 𝐴 → 𝐴 → SProp
refl ∶ 𝑥 ∼𝐴 𝑥
sym ∶ 𝑥 ∼𝐴 𝑦 → 𝑦 ∼𝐴 𝑥
trans ∶ 𝑥 ∼𝐴 𝑦 → 𝑦 ∼𝐴 𝑧 → 𝑥 ∼𝐴 𝑧
}

→ true dependent types

+ Universe of non-dependent types

3

An Inductive-Recursive Universe

Inductive 𝑈 ∶≡

| 𝑁 ∶ 𝑈
Π ∶ (𝐴 ∶ 𝑈) (𝑃 ∶ El 𝐴 → 𝑈) (𝑃𝑒 ∶ 𝑎 𝐴∼𝐴 𝑎′ → 𝑃 𝑎 ∼𝑈 𝑃 𝑎′) → 𝑈

El 𝑁 ≡ N

El (Π 𝐴 𝑃 𝑃𝑒) ≡ (𝑓 ∶ (𝑎 ∶ El 𝐴) → El (𝑃 𝑎))
× (𝑓𝑒 ∶ 𝑎 𝐴∼𝐴 𝑎′ → 𝑓 𝑎 𝑃𝑎∼𝑃𝑎′ 𝑓 𝑎′)

𝑁 ∼𝑈 𝑁 ≡ ⊤
Π 𝐴 𝑃 𝑃𝑒 ∼𝑈 Π 𝐵 𝑄 𝑄𝑒 ≡ (𝐴 ∼𝑈 𝐵) × (𝑎 𝐴∼𝐵 𝑏 → 𝑃𝑎 ∼𝑈 𝑄𝑏)
_ ∼𝑈 _ ≡ ⊥

𝑛 𝑁∼𝑁 𝑚 ≡ (* inductive def of equality *)
⟨𝑓, 𝑓𝑒⟩ Π 𝐴 𝑃 𝑃𝑒∼Π 𝐵 𝑄 𝑄𝑒 ⟨𝑔, 𝑔𝑒⟩ ≡ 𝑎 𝐴∼𝐵 𝑏 → 𝑓𝑎 𝑃𝑎∼𝑄𝑏 𝑔𝑏
𝑥 _∼_ 𝑦 ≡ ⊥

4

Is that actually a definition?

Agda accepts it

...actually, this is double ind-rec. No general theory for those AFAIK

Altenkirch, Boulier, Kaposi, Sattler and Sestini '21: we can do better

▶ encoding as an inductive-inductive family

▶ encoding as an inductive family in a theory with a
SProp-valued equality with large elimination

5

Is that actually a definition?

Agda accepts it

...actually, this is double ind-rec. No general theory for those AFAIK

Altenkirch, Boulier, Kaposi, Sattler and Sestini '21: we can do better

▶ encoding as an inductive-inductive family

▶ encoding as an inductive family in a theory with a
SProp-valued equality with large elimination

5

Is that actually a definition?

Agda accepts it

...actually, this is double ind-rec. No general theory for those AFAIK

Altenkirch, Boulier, Kaposi, Sattler and Sestini '21: we can do better

▶ encoding as an inductive-inductive family

▶ encoding as an inductive family in a theory with a
SProp-valued equality with large elimination

5

Is that actually a definition?

Agda accepts it

...actually, this is double ind-rec. No general theory for those AFAIK

Altenkirch, Boulier, Kaposi, Sattler and Sestini '21: we can do better

▶ encoding as an inductive-inductive family

▶ encoding as an inductive family in a theory with a
SProp-valued equality with large elimination

5

Is that actually a definition?

Agda accepts it

...actually, this is double ind-rec. No general theory for those AFAIK

Altenkirch, Boulier, Kaposi, Sattler and Sestini '21: we can do better

▶ encoding as an inductive-inductive family

▶ encoding as an inductive family in a theory with a
SProp-valued equality with large elimination

5

Is that actually a definition?

Agda accepts it

...actually, this is double ind-rec. No general theory for those AFAIK

Altenkirch, Boulier, Kaposi, Sattler and Sestini '21: we can do better

▶ encoding as an inductive-inductive family

▶ encoding as an inductive family in a theory with a
SProp-valued equality with large elimination

5

I.

An Inductive Universe

6

Let's just hack our way through it

Inductive 𝑈 ∶≡

|

𝑁 ∶ 𝑈
Π ∶ (𝐴 ∶ 𝑈)

(𝑃 ∶ El 𝐴 → 𝑈)
(𝑃𝑒 ∶ 𝑎 𝐴∼𝐴 𝑎′ → 𝑃 𝑎 ∼𝑈 𝑃 𝑎′) → 𝑈

El ∶ 𝑈 → Type
El 𝑁 ≡ N

El (Π 𝐴 𝑃 𝑃𝑒) ≡ (𝑓 ∶ (𝑎 ∶ El 𝐴) → El (𝑃 𝑎))
× (𝑓𝑒 ∶ 𝑎 𝐴∼𝐴 𝑎′ → 𝑓 𝑎 𝑃𝑎∼𝑃𝑎′ 𝑓 𝑎′)

(* Definition of equalities *)

7

Let's just hack our way through it

Inductive 𝑈 ∶≡

|
𝑁 ∶ 𝑈
Π ∶ (𝐴 ∶ 𝑈)

(𝑃 ∶ El 𝐴 → 𝑈) → 𝑈

El ∶ 𝑈 → Type
El 𝑁 ≡ N

El (Π 𝐴 𝑃) ≡ (𝑓 ∶ (𝑎 ∶ El 𝐴) → El (𝑃 𝑎))
× (𝑓𝑒 ∶ 𝑎 𝐴∼𝐴 𝑎′ → 𝑓 𝑎 𝑃𝑎∼𝑃𝑎′ 𝑓 𝑎′)

(* Definition of equalities *)

7

Let's just hack our way through it

Inductive 𝑈 ∶≡

|
𝑁 ∶ 𝑈
Π ∶ (𝐴 ∶ 𝑈) (𝐴= ∶ 𝐴 → 𝐴 → SProp)

(𝑃 ∶ El 𝐴 → 𝑈) (𝑃= ∶ 𝑃 𝑎 → 𝑃𝑎′ → SProp) → 𝑈

El ∶ 𝑈 → Type
El 𝑁 ≡ N

El (Π 𝐴 𝐴= 𝑃 𝑃=) ≡ (𝑓 ∶ (𝑎 ∶ El 𝐴) → El (𝑃 𝑎))
× (𝑓𝑒 ∶ 𝐴= 𝑎 𝑎′ → 𝑃= (𝑓 𝑎) (𝑓 𝑎′))

(* Definition of equalities *)

7

Let's just hack our way through it

Inductive 𝑈 ∶≡

|
𝑁 ∶ 𝑈
Π ∶ (𝐴 ∶ 𝑈) (𝐴= ∶ 𝐴 → 𝐴 → SProp)

(𝑃 ∶ El 𝐴 → 𝑈) (𝑃= ∶ 𝑃 𝑎 → 𝑃𝑎′ → SProp) → 𝑈

⎫⎪⎪⎪⎪⎪⎪

⎬⎪⎪⎪⎪⎪⎪
⎭

small IR
El ∶ 𝑈 → Type
El 𝑁 ≡ N

El (Π 𝐴 𝐴= 𝑃 𝑃=) ≡ (𝑓 ∶ (𝑎 ∶ El 𝐴) → El (𝑃 𝑎))
× (𝑓𝑒 ∶ 𝐴= 𝑎 𝑎′ → 𝑃= (𝑓 𝑎) (𝑓 𝑎′))

(* Definition of equalities *)

7

Let's just hack our way through it

Inductive 𝑈 ∶≡

|
𝑁 ∶ 𝑈
Π ∶ (𝐴 ∶ 𝑈) (𝐴= ∶ 𝐴 → 𝐴 → SProp)

(𝑃 ∶ El 𝐴 → 𝑈) (𝑃= ∶ 𝑃 𝑎 → 𝑃𝑎′ → SProp) → 𝑈

El ∶ 𝑈 → Type
El 𝑁 ≡ N

El (Π 𝐴 𝐴= 𝑃 𝑃=) ≡ (𝑓 ∶ (𝑎 ∶ El 𝐴) → El (𝑃 𝑎))
× (𝑓𝑒 ∶ 𝐴= 𝑎 𝑎′ → 𝑃= (𝑓 𝑎) (𝑓 𝑎′))

(* Definition of equalities without using 𝐴= or 𝑃= *)

7

Let's just hack our way through it

Inductive 𝑈𝑒 ∶ 𝑈 → Type ∶≡

|

𝑁𝑒 ∶ 𝑈𝑒 𝑁
Π𝑒 ∶ (𝐴 ∶ 𝑈) (𝐴𝑒 ∶ 𝑈𝑒 𝐴)

(𝑃 ∶ El 𝐴 → 𝑈) (𝑃𝑒 ∶ (𝑎 ∶ 𝐴) → 𝑈𝑒 (𝑃 𝑎))
(𝑃𝑒𝑥𝑡 ∶ 𝑎 𝐴∼𝐴 𝑎′ → 𝑃 𝑎 ∼𝑈 𝑃 𝑎′)
→ 𝑈𝑒 (Π 𝐴 (_ 𝐴∼𝐴 _) 𝑃 (𝜆 𝑎 𝑎′ . _ 𝑃𝑎∼𝑃𝑎′ _))

𝑈′ = (𝐴 ∶ 𝑈) × (𝑈𝑒 𝐴)

7

Let's just hack our way through it

Inductive 𝑈𝑒 ∶ 𝑈 → Type ∶≡

|

𝑁𝑒 ∶ 𝑈𝑒 𝑁
Π𝑒 ∶ (𝐴 ∶ 𝑈) (𝐴𝑒 ∶ 𝑈𝑒 𝐴)

(𝑃 ∶ El 𝐴 → 𝑈) (𝑃𝑒 ∶ (𝑎 ∶ 𝐴) → 𝑈𝑒 (𝑃 𝑎))
(𝑃𝑒𝑥𝑡 ∶ 𝑎 𝐴∼𝐴 𝑎′ → 𝑃 𝑎 ∼𝑈 𝑃 𝑎′)
→ 𝑈𝑒 (Π 𝐴 (_ 𝐴∼𝐴 _) 𝑃 (𝜆 𝑎 𝑎′ . _ 𝑃𝑎∼𝑃𝑎′ _))

𝑈′ = (𝐴 ∶ 𝑈) × (𝑈𝑒 𝐴)

7

Well, that was easy

Surprisingly enough, it works.

We can get an inductive-recursive universe hierarchy with

▶ A type coercion operator,

▶ Σ-types, W-types, Id-types,

▶ quotient types,

▶ a universe of propositions with Propext,

▶ universe embeddings.

Syntactic translation of MLTT+funext+propext+UIP+quotients
into MLTT + SProp which preserves conversion.

8

Well, that was easy

Surprisingly enough, it works.

We can get an inductive-recursive universe hierarchy with

▶ A type coercion operator,

▶ Σ-types, W-types, Id-types,

▶ quotient types,

▶ a universe of propositions with Propext,

▶ universe embeddings.

Syntactic translation of MLTT+funext+propext+UIP+quotients
into MLTT + SProp which preserves conversion.

8

Well, that was easy

Surprisingly enough, it works.

We can get an inductive-recursive universe hierarchy with

▶ A type coercion operator,

▶ Σ-types, W-types, Id-types,

▶ quotient types,

▶ a universe of propositions with Propext,

▶ universe embeddings.

Syntactic translation of MLTT+funext+propext+UIP+quotients
into MLTT + SProp which preserves conversion.

8

Well, that was easy

Surprisingly enough, it works.

We can get an inductive-recursive universe hierarchy with

▶ A type coercion operator,

▶ Σ-types, W-types, Id-types,

▶ quotient types,

▶ a universe of propositions with Propext,

▶ universe embeddings.

Syntactic translation of MLTT+funext+propext+UIP+quotients
into MLTT + SProp which preserves conversion.

8

Well, that was easy

Surprisingly enough, it works.

We can get an inductive-recursive universe hierarchy with

▶ A type coercion operator,

▶ Σ-types, W-types, Id-types,

▶ quotient types,

▶ a universe of propositions with Propext,

▶ universe embeddings.

Syntactic translation of MLTT+funext+propext+UIP+quotients
into MLTT + SProp which preserves conversion.

8

Well, that was easy

Surprisingly enough, it works.

We can get an inductive-recursive universe hierarchy with

▶ A type coercion operator,

▶ Σ-types, W-types, Id-types,

▶ quotient types,

▶ a universe of propositions with Propext,

▶ universe embeddings.

Syntactic translation of MLTT+funext+propext+UIP+quotients
into MLTT + SProp which preserves conversion.

8

Well, that was easy

Surprisingly enough, it works.

We can get an inductive-recursive universe hierarchy with

▶ A type coercion operator,

▶ Σ-types, W-types, Id-types,

▶ quotient types,

▶ a universe of propositions with Propext,

▶ universe embeddings.

Syntactic translation of MLTT+funext+propext+UIP+quotients
into MLTT + SProp which preserves conversion.

8

II.

Proof-relevant setoids

9

Choice issues

When working with setoids, we encounter choice issues

Computational data and equality proofs live in different worlds
→ difference between Σ and ∃

(𝑥 ∶ 𝐴) → Σ (𝑦 ∶ 𝐵) . 𝑅 𝑎 𝑏 → Σ (𝑓 ∶ 𝐴 → 𝐵) . (𝑥 ∶ 𝐴) → 𝑅 𝑥 𝑓(𝑥)

(𝑥 ∶ 𝐴) → ∃ (𝑦 ∶ 𝐵) . 𝑅 𝑎 𝑏 ↛ ∃ (𝑓 ∶ 𝐴 → 𝐵) . (𝑥 ∶ 𝐴) → 𝑅 𝑥 𝑓(𝑥)

10

Choice issues

When working with setoids, we encounter choice issues

Computational data and equality proofs live in different worlds
→ difference between Σ and ∃

(𝑥 ∶ 𝐴) → Σ (𝑦 ∶ 𝐵) . 𝑅 𝑎 𝑏 → Σ (𝑓 ∶ 𝐴 → 𝐵) . (𝑥 ∶ 𝐴) → 𝑅 𝑥 𝑓(𝑥)

(𝑥 ∶ 𝐴) → ∃ (𝑦 ∶ 𝐵) . 𝑅 𝑎 𝑏 ↛ ∃ (𝑓 ∶ 𝐴 → 𝐵) . (𝑥 ∶ 𝐴) → 𝑅 𝑥 𝑓(𝑥)

10

Review of universes

SProp
Impredicative, definitionally proof-irrelevant, large elim only
allowed for ⊥

★★★☆☆

Prop
Impredicative, morally proof-irrelevant, large elim only allowed for
subsingletons (in particular, ⊥, Id, Acc) ★★★☆☆

Impredicative Set
Impredicative, proof-relevant, weird, large elim only allowed for
small inductives ★★☆☆☆

Type
Predicative hierarchy, proof-relevant, large elim allowed ★★★★★

11

Review of universes

SProp
Impredicative, definitionally proof-irrelevant, large elim only
allowed for ⊥

★★★☆☆

Prop
Impredicative, morally proof-irrelevant, large elim only allowed for
subsingletons (in particular, ⊥, Id, Acc) ★★★☆☆

Impredicative Set
Impredicative, proof-relevant, weird, large elim only allowed for
small inductives ★★☆☆☆

Type
Predicative hierarchy, proof-relevant, large elim allowed ★★★★★

11

Review of universes

SProp
Impredicative, definitionally proof-irrelevant, large elim only
allowed for ⊥ ★★★☆☆

Prop
Impredicative, morally proof-irrelevant, large elim only allowed for
subsingletons (in particular, ⊥, Id, Acc) ★★★☆☆

Impredicative Set
Impredicative, proof-relevant, weird, large elim only allowed for
small inductives ★★☆☆☆

Type
Predicative hierarchy, proof-relevant, large elim allowed ★★★★★

11

Review of universes

SProp
Impredicative, definitionally proof-irrelevant, large elim only
allowed for ⊥ ★★★☆☆

Prop
Impredicative, morally proof-irrelevant, large elim only allowed for
subsingletons (in particular, ⊥, Id, Acc)

★★★☆☆

Impredicative Set
Impredicative, proof-relevant, weird, large elim only allowed for
small inductives ★★☆☆☆

Type
Predicative hierarchy, proof-relevant, large elim allowed ★★★★★

11

Review of universes

SProp
Impredicative, definitionally proof-irrelevant, large elim only
allowed for ⊥ ★★★☆☆

Prop
Impredicative, morally proof-irrelevant, large elim only allowed for
subsingletons (in particular, ⊥, Id, Acc) ★★★☆☆

Impredicative Set
Impredicative, proof-relevant, weird, large elim only allowed for
small inductives ★★☆☆☆

Type
Predicative hierarchy, proof-relevant, large elim allowed ★★★★★

11

Review of universes

SProp
Impredicative, definitionally proof-irrelevant, large elim only
allowed for ⊥ ★★★☆☆

Prop
Impredicative, morally proof-irrelevant, large elim only allowed for
subsingletons (in particular, ⊥, Id, Acc) ★★★☆☆

Impredicative Set
Impredicative, proof-relevant, weird, large elim only allowed for
small inductives

★★☆☆☆

Type
Predicative hierarchy, proof-relevant, large elim allowed ★★★★★

11

Review of universes

SProp
Impredicative, definitionally proof-irrelevant, large elim only
allowed for ⊥ ★★★☆☆

Prop
Impredicative, morally proof-irrelevant, large elim only allowed for
subsingletons (in particular, ⊥, Id, Acc) ★★★☆☆

Impredicative Set
Impredicative, proof-relevant, weird, large elim only allowed for
small inductives ★★☆☆☆

Type
Predicative hierarchy, proof-relevant, large elim allowed ★★★★★

11

Review of universes

SProp
Impredicative, definitionally proof-irrelevant, large elim only
allowed for ⊥ ★★★☆☆

Prop
Impredicative, morally proof-irrelevant, large elim only allowed for
subsingletons (in particular, ⊥, Id, Acc) ★★★☆☆

Impredicative Set
Impredicative, proof-relevant, weird, large elim only allowed for
small inductives ★★☆☆☆

Type
Predicative hierarchy, proof-relevant, large elim allowed

★★★★★

11

Review of universes

SProp
Impredicative, definitionally proof-irrelevant, large elim only
allowed for ⊥ ★★★☆☆

Prop
Impredicative, morally proof-irrelevant, large elim only allowed for
subsingletons (in particular, ⊥, Id, Acc) ★★★☆☆

Impredicative Set
Impredicative, proof-relevant, weird, large elim only allowed for
small inductives ★★☆☆☆

Type
Predicative hierarchy, proof-relevant, large elim allowed ★★★★★

11

Varieties of setoids

SProp setoids
Once you truncate something, it's lost for good→ no choice at all

Prop setoids
Large elimination of accessibility→ Σ01-choice

12

Varieties of setoids

SProp setoids
Once you truncate something, it's lost for good→ no choice at all

Prop setoids
Large elimination of accessibility→ Σ01-choice

12

Varieties of setoids

SProp setoids
Once you truncate something, it's lost for good→ no choice at all

Prop setoids
Large elimination of accessibility→ Σ01-choice

12

Type-valued setoids

Using Type means that the truncation barely does anything:
we simply change the equality relation to the trivial one.

This allows us to include some cool choice principles:

Function comprehension / Unique choice
Functional relations are the same thing as functions

Countable and dependent choice
Since the setoid equality on N coincides with the meta-equality,
every function out of N is automatically a setoid morphism.

13

Type-valued setoids

Using Type means that the truncation barely does anything:
we simply change the equality relation to the trivial one.

This allows us to include some cool choice principles:

Function comprehension / Unique choice
Functional relations are the same thing as functions

Countable and dependent choice
Since the setoid equality on N coincides with the meta-equality,
every function out of N is automatically a setoid morphism.

13

Type-valued setoids

Using Type means that the truncation barely does anything:
we simply change the equality relation to the trivial one.

This allows us to include some cool choice principles:

Function comprehension / Unique choice
Functional relations are the same thing as functions

Countable and dependent choice
Since the setoid equality on N coincides with the meta-equality,
every function out of N is automatically a setoid morphism.

13

Type-valued setoids

Using Type means that the truncation barely does anything:
we simply change the equality relation to the trivial one.

This allows us to include some cool choice principles:

Choice for higher order types
For the setoid equality on N → N to coincide with the
meta-equality, we need function extensionality in the meta...

What a coincidence! We have a translation that does just that ☺

Type-valued setoids inside the SProp-valued setoid model have
choice for all Martin-Löf types

(cf. Rathjen, Choice principles in constructive and classical set theories)

14

Type-valued setoids

Using Type means that the truncation barely does anything:
we simply change the equality relation to the trivial one.

This allows us to include some cool choice principles:

Choice for higher order types
For the setoid equality on N → N to coincide with the
meta-equality, we need function extensionality in the meta...

What a coincidence! We have a translation that does just that ☺

Type-valued setoids inside the SProp-valued setoid model have
choice for all Martin-Löf types

(cf. Rathjen, Choice principles in constructive and classical set theories)

14

Type-valued setoids

Using Type means that the truncation barely does anything:
we simply change the equality relation to the trivial one.

This allows us to include some cool choice principles:

Choice for higher order types
For the setoid equality on N → N to coincide with the
meta-equality, we need function extensionality in the meta...

What a coincidence! We have a translation that does just that ☺

Type-valued setoids inside the SProp-valued setoid model have
choice for all Martin-Löf types

(cf. Rathjen, Choice principles in constructive and classical set theories)

14

What about Impredicative Set?

idk, Impredicative-Set-valued setoids seem to sit somewhere
inbetween Prop-valued and Type-valued setoids

15

Universes for proof-relevant setoids

Take the universe construction from earlier, and substitute SProp for
your favourite universe. It just works!

16

A syntactic model?

Can we get the ultimate setoid translation out of this?

Γ ⊢ 𝑡 ∶ 𝐴 JΓK ⊢ J𝑡K ∶ J𝐴K
Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 JΓK ⊢ J𝑡K ≡ J𝑢K ∶ J𝐴K

Unfortunately, no ☹

Substitution don't go under binders: (𝜆𝑥 . 𝑡) [𝜎] ≢ 𝜆𝑥 . 𝑡 [𝜎↑]
Barras, Coquand, Huber, "A Generalization of Takeuti-Gandy
Interpretation"

17

A syntactic model?

Can we get the ultimate setoid translation out of this?

Γ ⊢ 𝑡 ∶ 𝐴 JΓK ⊢ J𝑡K ∶ J𝐴K
Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 JΓK ⊢ J𝑡K ≡ J𝑢K ∶ J𝐴K

Unfortunately, no ☹

Substitution don't go under binders: (𝜆𝑥 . 𝑡) [𝜎] ≢ 𝜆𝑥 . 𝑡 [𝜎↑]
Barras, Coquand, Huber, "A Generalization of Takeuti-Gandy
Interpretation"

17

A syntactic model?

Can we get the ultimate setoid translation out of this?

Γ ⊢ 𝑡 ∶ 𝐴 JΓK ⊢ J𝑡K ∶ J𝐴K
Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 JΓK ⊢ J𝑡K ≡ J𝑢K ∶ J𝐴K

Unfortunately, no ☹

Substitution don't go under binders: (𝜆𝑥 . 𝑡) [𝜎] ≢ 𝜆𝑥 . 𝑡 [𝜎↑]
Barras, Coquand, Huber, "A Generalization of Takeuti-Gandy
Interpretation"

17

Questions

▶ Can we derive a systematic encoding of double
induction-recursion from this hack?

▶ Can we find a nice-ish syntax for the "proof-relevant
observational type theory" of this weak model?

18

Thank you!

19

