Pietro Sabelli *j.w.w.* Maria Emilia Maietti

Department of Logic Institute of Philosophy of the Czech Academy of Sciences

TYPES 2025 University of Strathclyde, Glasgow, 9-13 June 2025

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Full extensional type theories

$$\frac{p: \mathsf{Id}(A, a, b)}{a = b: A}$$

Full extensional type theories

$$\frac{p: \mathsf{Id}(A, a, b)}{a = b: A}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- are closer to standard mathematical practice;
- save you from setoid and transport hells;
- enjoy simpler categorical semantics.

Full extensional type theories

$$\frac{p: \mathsf{Id}(A, a, b)}{a = b: A}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

are closer to standard mathematical practice;

save you from setoid and transport hells;

enjoy simpler categorical semantics.

However

Their judgments are undecidable

Full extensional type theories

$$\frac{p: \mathsf{Id}(A, a, b)}{a = b: A}$$

- are closer to standard mathematical practice;
- save you from setoid and transport hells;
- enjoy simpler categorical semantics.

However

Their judgments are undecidable

 \Rightarrow no normalization procedure for their terms

Full extensional type theories

$$\frac{p: \mathsf{Id}(A, a, b)}{a = b: A}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- are closer to standard mathematical practice;
- save you from setoid and transport hells;
- enjoy simpler categorical semantics.

However

Their judgments are undecidable

- \Rightarrow no normalization procedure for their terms
- ⇒ difficult to implement as proof-assistants (not impossible: see Nuprl, Andromeda)

Full extensional type theories

$$\frac{p: \mathsf{Id}(A, a, b)}{a = b: A}$$

- are closer to standard mathematical practice;
- save you from setoid and transport hells;
- enjoy simpler categorical semantics.

However

Their judgments are undecidable

- \Rightarrow no normalization procedure for their terms
- ⇒ difficult to implement as proof-assistants (not impossible: see Nuprl, Andromeda)

Possible solution: switch to intensional theories with extensional features.

Full extensional type theories

$$\frac{p: \mathsf{Id}(A, a, b)}{a = b: A}$$

- are closer to standard mathematical practice;
- save you from setoid and transport hells;
- enjoy simpler categorical semantics.

However

Their judgments are undecidable

- \Rightarrow no normalization procedure for their terms
- ⇒ difficult to implement as proof-assistants (not impossible: see Nuprl, Andromeda)

Possible solution: switch to intensional theories with extensional features. Or...

M. E. Maietti. "A minimalist two-level foundation for constructive mathematics". 2009

M. E. Maietti, G. Sambin. "Toward a minimalist foundation for constructive mathematics". 2005

Following the forget-restore principle, a two-level foundation consists of:

M. E. Maietti, G. Sambin. "Toward a minimalist foundation for constructive mathematics". 2005

M. E. Maietti. "A minimalist two-level foundation for constructive mathematics". 2009

Following the forget-restore principle, a two-level foundation consists of:

1. An intensional level for computer scientists. The computational content is stored in its decidable judgments.

M. E. Maietti, G. Sambin. "Toward a minimalist foundation for constructive mathematics". $2005\,$

M. E. Maietti. "A minimalist two-level foundation for constructive mathematics". 2009

Following the forget-restore principle, a two-level foundation consists of:

- 1. An intensional level for computer scientists. The computational content is stored in its decidable judgments.
- 2. An extensional level for the mathematicians, obtained by *forgetting* irrelevant content (e.g. explicit proof terms, type and term equalities). The computational content is "hidden" in its derivations.

M. E. Maietti. "A minimalist two-level foundation for constructive mathematics". 2009

M. E. Maietti, G. Sambin. "Toward a minimalist foundation for constructive mathematics". 2005

G. Sambin, S. Valentini. "Building up a toolbox for Martin-Löf's type theory: subset theory". 1995

Following the forget-restore principle, a two-level foundation consists of:

- 1. An intensional level for computer scientists. The computational content is stored in its decidable judgments.
- 2. An extensional level for the mathematicians, obtained by *forgetting* irrelevant content (e.g. explicit proof terms, type and term equalities). The computational content is "hidden" in its derivations.
- 3. An interpretation of the extensional level into the intensional one, which reads off an extensional derivation and *restore* its computational content as an intensional judgment.

M. E. Maietti, G. Sambin. "Toward a minimalist foundation for constructive mathematics". $2005\,$

M. E. Maietti. "A minimalist two-level foundation for constructive mathematics". 2009

Selling point: it formalizes agnostic mathematics. A foundation for those who don't want to commit to any particular foundation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Selling point: it formalizes agnostic mathematics. A foundation for those who don't want to commit to any particular foundation.

- 1. Its intensional level is **mTT** \approx intensional Martin-Löf's type theory
 - + primitively-defined propositions

Selling point: it formalizes agnostic mathematics. A foundation for those who don't want to commit to any particular foundation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Its intensional level is mTT
 ≈ intensional Martin-Löf's type theory
 + primitively-defined propositions
- 2. Its extensional level is **emTT**
 - \approx extensional Martin-Löf's type theory
 - + primitively-defined propositions
 - + quotients

Selling point: it formalizes agnostic mathematics. A foundation for those who don't want to commit to any particular foundation.

- Its intensional level is mTT
 ≈ intensional Martin-Löf's type theory
 + primitively-defined propositions
- 2. Its extensional level is emTT
 - \approx extensional Martin-Löf's type theory
 - + primitively-defined propositions
 - + quotients
- 3. The restore interpretation is obtained through a setoid model.

Selling point: it formalizes agnostic mathematics. A foundation for those who don't want to commit to any particular foundation.

- Its intensional level is mTT
 ≈ intensional Martin-Löf's type theory
 + primitively-defined propositions
- 2. Its extensional level is emTT
 - \approx extensional Martin-Löf's type theory
 - + primitively-defined propositions
 - + quotients
- 3. The restore interpretation is obtained through a setoid model.

Idea

The Minimalist Foundation is a predicative version of the Calculus of Constructions.

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1. We take as the intensional level $\mathbf{CC}_{\mathsf{ML}}$

- 1. We take as the intensional level $\textbf{CC}_{\mathsf{ML}}$
 - = **CC** extended with
 - $+ \ \mathsf{cumulativity} \ \mathsf{Prop} \subset \mathsf{Type}$
 - + basic inductive types N_0, N_1, List, +, and Σ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1. We take as the intensional level $\textbf{CC}_{\mathsf{ML}}$

- = **CC** extended with
 - $+ \ \mathsf{cumulativity} \ \mathsf{Prop} \subset \mathsf{Type}$
 - + basic inductive types N_0, N_1, List, +, and Σ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 2. We take as the extensional level **emTT**_{imp}
 - = the *impredicative* version of **emTT**

- 1. We take as the intensional level $\textbf{CC}_{\mathsf{ML}}$
 - = **CC** extended with
 - $+ \ \mathsf{cumulativity} \ \mathsf{Prop} \subset \mathsf{Type}$
 - + basic inductive types N_0, N_1, List, +, and Σ
- 2. We take as the extensional level **emTT**_{imp}
 - = the *impredicative* version of **emTT**
 - = extensional Martin-Löf's type theory extended with
 - $+\ {\rm a}\ {\rm primitive}\ {\rm kind}\ {\rm of}\ {\rm propositions}$
 - + quotient types A/R
 - + power types $\mathcal{P}(A)$ with canonical elements $\{x : A | \varphi(x)\}$

- 1. We take as the intensional level $\textbf{CC}_{\mathsf{ML}}$
 - = **CC** extended with
 - $+ \ \mathsf{cumulativity} \ \mathsf{Prop} \subset \mathsf{Type}$
 - + basic inductive types N_0, N_1, List, +, and Σ
- 2. We take as the extensional level **emTT**_{imp}
 - = the *impredicative* version of **emTT**
 - = extensional Martin-Löf's type theory extended with
 - $+\ {\rm a}\ {\rm primitive}\ {\rm kind}\ {\rm of}\ {\rm propositions}$
 - + quotient types A/R
 - + power types $\mathcal{P}(A)$ with canonical elements $\{x : A | \varphi(x)\}$

3. The restore interpretation is obtained by lifting the setoid model of the Minimalist Foundation to the present theories.

Theorem

The two levels $emTT_{imp}$ and CC_{ML} are equiconsistent.

M. E. Maietti, P. Sabelli. "Equiconsistency of the Minimalist Foundation with its classical version". 2025

Theorem

The two levels $emTT_{imp}$ and CC_{ML} are equiconsistent.

Theorem

The two levels $emTT_{imp}$ and CC_{ML} prove the same statements formulated in the language of higher-order arithmetic.

M. E. Maietti, P. Sabelli. "Equiconsistency of the Minimalist Foundation with its classical version". 2025

Theorem

The two levels $emTT_{imp}$ and CC_{ML} are equiconsistent.

Theorem

The two levels $emTT_{imp}$ and CC_{ML} prove the same statements formulated in the language of higher-order arithmetic.

Definition

Let $emTT_{imp}^{c}$ be the *classical version* $emTT_{imp}$ obtained by adding the Law of Excluded Middle to it.

Theorem

The two levels $emTT_{imp}$ and CC_{ML} are equiconsistent.

Theorem

The two levels $emTT_{imp}$ and CC_{ML} prove the same statements formulated in the language of higher-order arithmetic.

Definition

Let $emTT_{imp}^{c}$ be the *classical version* $emTT_{imp}$ obtained by adding the Law of Excluded Middle to it.

Theorem

 $emTT_{imp}^{c}$ is equiconsistent with $emTT_{imp}$ via a double-negation translation.

Categorical semantics: quasi-toposes

Definition

A *quasi-topos* is a locally cartesian closed category with finite colimits and a regular subobject classifier.

It is *arithmetical* if moreover has a natural number object.

M. E. Maietti. "Modular correspondence between dependent type theories and categories including pretopoi and topoi". 2005

J. Penon. "Quasi-topos". 1973

・ロト・日本・日本・日本・日本

Categorical semantics: quasi-toposes

Definition

A *quasi-topos* is a locally cartesian closed category with finite colimits and a regular subobject classifier.

It is arithmetical if moreover has a natural number object.

Theorem (*)

There is an equivalence of categories

M. E. Maietti. "Modular correspondence between dependent type theories and categories including pretopoi and topoi". 2005

J. Penon. "Quasi-topos". 1973

Thanks for your attention!

・ロト・日本・ヨト・ヨー うへの

A Rosetta Stone for quasi-toposes

emTT _{imp}	Quasi-topos
Context, (Closed) Type	Object
Dependent type	Arrow
Dependent mono-type	Monomorphism
Dependent proposition	Regular monomorphism
Term	Section
Type constructors	Quasitopos structure
Empty set	Initial object
Singleton set	Terminal object
Dependent sum	Dependent coproduct
Dependent product	Dependent product
Disjoint sum	Binary coproduct
Quotient set	Coequalizer
Equality	Equalizer
Universal quantifier	Dependent product
Powerset	Exponentials of the classifier