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Motivation

Choice sequences were originally introduced in Brouwer’s second act of
intuitionism [2]:

▶ they are infinite sequences whose values are generated in a possibly
nondeterministic manner;

▶ we only ever have access to a finite number of values.

They are anti-classical but with them Brouwer gave a successful account of analysis in
an intuitionistic setting.

In previous work we mixed them with a realizability model of type theory to separate
three different versions of Markov’s principles [1].



Choice sequence axioms

Assuming we have a type ChoiceSeq of choice sequences.
Each element δ : ChoiceSeq be coerced to a function δ : N → N.

▶ Density Axiom:
For every list l of natural numbers, there exists a choice sequence δ with l as a
prefix.

▶ Decidability of Equality:
Equality of elements in ChoiceSeq is decidable.

▶ Axiom of Open Data:
Given a predicate P : ChoiceSeq → Ω, if Pδ holds then there exists some natural
number n such that for all σ : ChoiceSeq which agree with δ on their first n
entries, Pσ also holds.



Setting the table

Choice sequences are usually treated formally through Kripke/Beth style semantics ⇝
leads to presheaves and sheaves.

Fix a rooted tree W seen as a poset of worlds.

Given a world w : W and an upwards closed subset U ⊆ W, we say that U covers w if
all paths through W which start from w , eventually reach U.



With sheafification come choice sequences

Pure natural numbers:

3•

3• 3•

3•

3• 3•

3•

If you sheafify then you allow:

3•

3• 3•
•

• 4•

6•

The function space ∆N → a∆N features similar notion of nondeterminism as choice
sequences (but misses the previous axioms).



A first attempt at a sensible tripos

Start with a pca A with application − ·w − indexed by w : W.

Given a presheaf X , we define realizability predicates on X as natural
transformations from X to P□(A)

a ∈ φw (x) means that a is evidence that x satisfies φ at world w

We want to order predicates: say that ϕ ≤ ψ at world w if there exists a code e : A
such that for all extensions u ≤ w , elements x : Xu and codes a : A, if u ∈ ϕu(x , a)
then there exists a cover V of u such that for all v ∈ V we have

e ·v a ↓ and v ∈ ψv (x |v , e ·v a)



Avoiding explicit mention of covers

We can use a Lawvere-Tierney topology to
avoid explicit mention of covers.

That is a modality □ : Ω → Ω such that

▶ P ⇒ □P
▶ □□P ⇒ □P
▶ □(P ∧ Q) = □P ∧□Q



A definition internal to a topos

Assume we have an internal pca A in E .

Given an object X of E , we define realizability predicates on X as the type
X → P□(A).

We can order realizability predicates, we say φ ≤ ψ if we have a uniform way of
sending evidence of φ to evidence for ψ:

∃e : A. ∀x : X .∀a ∈ φ(x).□(e · a ↓ ∧ e · a ∈ ψ(x))

This extends to give a tripos T on E [3].



Next steps

▶ Can define a geometric morphism from E□[T ] → E [T ] which gives an analogue of
sheafification on E [T ].
⇝ sends a type to an effectful version where elements may depend on the world in
a realizable way.

▶ Different presheaf pcas should be able to validate the different choice axioms.

▶ Do we lose anything from the computational type theory setting? Can we still
separate different versions of Markov’s principle?
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