
How (not) to prove typed type conversion transitive

Yann Leray
11th June 2025

Nantes Université, École Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, F-44000 Nantes, France

Overarching goal

Γ ` t ≡ u : T

Specification

let t = whnf t in

let u = whnf u in

compare Γ ty t u

Algorithm

Completeness

Correctness

1

Overarching goal

Γ ` t ≡ u : T

Specification

let t = whnf t in

let u = whnf u in

eq_syntax t u ||

compare Γ ty t u

Algorithm
Correctness

Completeness

1

Overarching goal

Γ ` t ≡ u : T

Specification

Completeness

Correctness

· ≡h ·

‘Algorithm’

1

Correction and completeness

Specification
• Equivalence relation

• Partial reflexivity
• Symmetry
• Transitivity

• Congruence
• Type conversion
• Reduction rules
• η laws

Algorithm

• Congruence
• Type conversion

• Reduction rules and η laws
(auxiliary reduction relation)

2

Correction and completeness

Specification
• Equivalence relation

• Partial reflexivity
• Symmetry
• Transitivity

• Congruence
• Type conversion
• Reduction rules
• η laws

Algorithm

• Congruence X

• Type conversion X

• Reduction rules and η laws X
(auxiliary reduction relation) X

2

Correction and completeness

Specification
• Equivalence relation

• Partial reflexivity X
• Symmetry X
• Transitivity

• Congruence X

• Type conversion X

• Reduction rules X
• η laws X

Algorithm

• Congruence X

• Type conversion X

• Reduction rules and η laws X
(auxiliary reduction relation) X

2

Correction and completeness

Specification
• Equivalence relation

• Partial reflexivity X
• Symmetry X
• Transitivity

• Congruence X

• Type conversion X

• Reduction rules X
• η laws X

Algorithm

• Congruence X

• Type conversion X

• Reduction rules and η laws X
(auxiliary reduction relation) X

2

How to prove transitivity

1. By a simple induction?
Case (λ(x : A0), t0) u0 ≡a (λ(x : A1), t1) u1 ≡a t2[x := u2]
Substitution does not preserve sizes for ≡a

2. Through logical relations and deterministic reduction
Transitivity is traded for reflexivity (need normalisation)

3. Through parallel relations and Hindley-Rosen technique

Γ ` t ≡ u : T

Specification

· ≡h ·

Algorithm

· ≡α ·
* *

Joinability
3

Joinability, parallel relations

The conversion relation is split betweenV,Vη and ≡α :

• Congruence
• Type conversion (yet to be determined conversion relation)

• Base blocks

Γ, (x : A) ` t V t′ : B Γ ` uV u′ : A
β

Γ ` (λx, t) uV t′[x := u′] : B[x := u]

Γ ` t Vη t′ : Π(x : A),B
η

Γ ` t Vη λx, t′ x : Π(x : A),B

• All combined : (≡j) = [(V + Vη)
∗;≡α; (W + ηW)∗]

· ≡α ·
* *

4

Confluence

Required commutation bricks
· ≡α · · ≡α ·
* * * *

·

· ·

·

·

· ·

··

η

η

·

· ·

· ≡α ·

η η

η η

·
· ·α

α

α

· ·

· ·

α

α

(+ withVη)
(+ vertical symmetric)

5

Constraints on type conversion

0. Type uniqueness (or principality),
To do any kind of derivation inversion.

1. Reflexivity and transitivity of type conversion (symmetry can also help greatly),
To juggle with the different possible types that appear.

2. Inclusion ofV,Vη and ≡α in type conversion,
Since types and contexts may reduce through the type annotations.

6

Constraints on type conversion

0. Type uniqueness 1. Type conversion PER
2. Inclusion ofV,Vη and ≡α

3. During theV / V commutation, in the case β against congruence:

(λx, t0)u0

(λx, t1)u1 t2[x := u2]

tf [x := uf]

congr β

β subst

V needs to be substitutive (its whole point),

but this means that type conversion itself has to be substitutive.

7

Constraints on type conversion

0. Type uniqueness 1. Type conversion PER
2. Inclusion ofV,Vη and ≡α 3. Type conversion substitutive

4. During theV / Vη commutation, in the case β against η:

(λx, t0)u0

t1[x := u1] (λy, (λx, t2)y)u2

tf [x := uf]

β η

subst β2

In a β-redex, λx, t : Π(x : A),B ≡ Π(x : A′),B′

(application to u).
For a β-redex to be well typed, we need A ≡ A′

and B ≡ B′.
But here, we create a redex ex nihilo.

Therefore, we need injectivity of type conversion for type constructors.

8

Constraints on type conversion

0. Type uniqueness 1. Type conversion PER
2. Inclusion ofV,Vη and ≡α 3. Type conversion substitutive
4. Injectivity of type constructors

5. During theV / Vη commutation, in the case β against η:

(λx, t0)u0

t1[x := u1] 〈(λx, t2)1, (λx, t2)2〉u2

???

β η

This η-expansion must be prevented: no term t may have both type Π(x : A),B and A′ × B′.

For type conversion, this translates to non-confusion for type constructors
(Π(x : A),B 6≡ A′ × B′). 9

What definition for type conversion

0. Type uniqueness 1. Type conversion PER
2. Inclusion ofV,Vη and ≡α 3. Type conversion substitutive
4. Injectivity of type constructors 5. Non-confusion for type conversion

The immediate candidates:

• ≡s (1, 2, 3 but not 4, 5)
• ≡j (2, 3, 4, 5 but not transitivity) (even by induction)
• ≡a (same)

The possible side steps:

• 0 can be solved through either bidirectional typing or annotations
• Reflexivity and (2) can be waived, if transitivity changed into stability under
V,Vη,≡α

10

Conclusion

1. When type conversion is typed and has η rules, injectivity and non-confusion of type
constructors are central to the proof of adequacy between specification and
implementation of a type theory

2. Transitivity is also required and difficult to side step

3. More work is needed to find the ideal definition for type conversion

11

