Predicative Stone Duality in Univalent Foundations

TYPES 2025, Glasgow

Ayberk Tosun (j.w.w. Martín Escardó)

University of Birmingham

Tuesday, 10 June 2025

- → Stone [Sto36] first discovered this duality in the context of Boolean algebras.
- → He then generalized [Sto37] it to distributive lattices.

The clopens of X form a **Boolean algebra**.

Let *L* be a **Boolean algebra**.

The ultrafilters of *L* form a **Stone space**.

In Stone spaces, the **clopens** coincide with the **compact opens**. It is really the *algebra of compact opens* that matters!

Let X be a **spectral space**.

The compact opens of X form a **distributive lattice**.

Let *L* be a **distributive lattice**.

The clopens of X form a **Boolean algebra**.

Let *L* be a **Boolean algebra**.

The ultrafilters of *L* form a **Stone space**.

In Stone spaces, the **clopens** coincide with the **compact opens**. It is really the *algebra of compact opens* that matters!

Let X be a **spectral space**.

The compact opens of X form a **distributive lattice**.

Let *L* be a **distributive lattice**.

The clopens of X form a **Boolean algebra**.

Let *L* be a **Boolean algebra**.

The ultrafilters of *L* form a **Stone space**.

In Stone spaces, the **clopens** coincide with the **compact opens**. It is really the *algebra of compact opens* that matters!

Let X be a **spectral space**.

The compact opens of X form a **distributive lattice**.

Let *L* be a **distributive lattice**.

The clopens of X form a **Boolean algebra**.

Let *L* be a **Boolean algebra**.

The ultrafilters of *L* form a **Stone space**.

In Stone spaces, the **clopens** coincide with the **compact opens**. It is really the *algebra of compact opens* that matters!

Let X be a **spectral space**.

The compact opens of X form a **distributive lattice**.

Let *L* be a **distributive lattice**.

The clopens of X form a **Boolean algebra**.

Let *L* be a **Boolean algebra**.

The ultrafilters of *L* form a **Stone space**.

In Stone spaces, the **clopens** coincide with the **compact opens**. It is really the *algebra of compact opens* that matters!

Let X be a **spectral space**.

The compact opens of X form a distributive lattice.

Let *L* be a **distributive lattice**.

We develop the Stone duality between **spectral spaces** and **distributive lattices** in the foundational setting of univalent type theory,

which is

constructive and predicative

by default.

Stone duality is classical in a point-set setting.

Taking locales as our notion of **space**, however, Stone duality can be carried out in a *completely constructive* way.

Stone duality is classical in a point-set setting.

Taking locales as our notion of **space**, however, Stone duality can be carried out in a *completely constructive* way.

A **locale** is a notion of space defined solely by its **lattice of opens**.

In point-free topology, we do not *require* that a topology be a sublattice of the powerset lattice of *some set of points*.

A **locale** is a notion of space defined solely by its **lattice of opens**.

In point-free topology, we do not *require* that a topology be a sublattice of the powerset lattice of *some set of points*.

Foundations

Definition (V-smallness)

A type $X : \mathcal{U}$ is called \mathcal{V} -**small** if it has a copy in universe \mathcal{V} i.e.

 $\Sigma_{(Y:\mathcal{V})}X \simeq Y.$

Definition (Local V-smallness)

A type X : U is called **locally** V-**small** if the identity type x = y is V-small for every pair of inhabitants x, y : X.

Definition (Ω)

We denote by $\Omega_{\mathcal{U}}$ the type of propositions in universe $\mathcal{U}.$

Definition (Propositional resizing)

The **propositional** $(\mathcal{U}, \mathcal{V})$ -resizing axiom says that every proposition P : $\Omega_{\mathcal{U}}$ is \mathcal{V} -small.

Definition (Ω**-resizing)** The Ω-(\mathcal{U} , \mathcal{V})**-resizing axiom** says that $\Omega_{\mathcal{U}}$ is \mathcal{V} -small.

Definition (Ω)

We denote by $\Omega_{\mathcal{U}}$ the type of propositions in universe $\mathcal{U}.$

Definition (Propositional resizing)

The **propositional** (U, V)-resizing axiom says that every proposition $P : \Omega_U$ is V-small.

Definition (Ω **-resizing)**

The Ω -(\mathcal{U}, \mathcal{V})-resizing axiom says that $\Omega_{\mathcal{U}}$ is \mathcal{V} -small.

Proposition

LEM implies Ω -(\mathcal{U}, \mathcal{V})-resizing for all universes.

Proof sketch

- → If LEM holds, all propositions are decidable i.e. $\Omega \simeq 2$.
- → The type **2** always has a copy in U_0 .
- → Types in \mathcal{U}_o can always be lifted up to any universe.

Predicative mathematics is a branch of constructive mathematics.

Proposition

LEM implies Ω -(\mathcal{U}, \mathcal{V})-resizing for all universes.

Proof sketch

- → If LEM holds, all propositions are decidable i.e. $\Omega \simeq 2$.
- → The type **2** always has a copy in U_0 .
- → Types in U_0 can always be lifted up to any universe.

Predicative mathematics is a branch of constructive mathematics.

Definition (Univalence)

A universe \mathcal{U} is called **univalent** if, for every pair of types $X, Y : \mathcal{U}$, the map idtoeqv : $X =_{\mathcal{U}} Y \to X \simeq Y$ is an equivalence.

Definition (The univalence axiom)

The univalence axiom says that every universe is univalent.

Generalization of Propositions 2.8 and 2.9 of [d]E23]

The following are equivalent:

- → For every type A : U, the type expressing that A is V-small is a proposition (for every pair of universes U and V).
- \rightarrow The univalence axiom holds.

Definition (Univalence)

A universe \mathcal{U} is called **univalent** if, for every pair of types $X, Y : \mathcal{U}$, the map idtoeqv : $X =_{\mathcal{U}} Y \to X \simeq Y$ is an equivalence.

Definition (The univalence axiom)

The univalence axiom says that every universe is univalent.

Generalization of Propositions 2.8 and 2.9 of [d]E23]

The following are equivalent:

- → For every type A : U, the type expressing that A is V-small is a proposition (for every pair of universes U and V).
- → The univalence axiom holds.

Basics of point-free topology

Definition (Frame)

- A $(\mathcal{U}, \mathcal{V}, \mathcal{W})$ -frame consists of
 - → a type A : \mathcal{U} ,
 - → a partial order \leq : A → A → $\Omega_{\mathcal{V}}$,
 - → a top element 1 : A,
 - ightarrow a binary meet operation \wedge : A ightarrow A,
 - → a join operation \bigvee _ : Fam_W(A) → A;
 - → satisfying distributivity i.e. $x \land \bigvee_{i:1} y_i = \bigvee_{i:1} x \land y_i$ for every x : A and W-family $(y_i)_{i:1}$ in A.

Large, locally small, and small-complete frame: $(\mathcal{U}^+\!,\mathcal{U},\mathcal{U})$ -frame.

Definition (Frame)

- A $(\mathcal{U}, \mathcal{V}, \mathcal{W})$ -frame consists of
 - → a type A : \mathcal{U} ,
 - → a partial order \leq : A → A → $\Omega_{\mathcal{V}}$,
 - \rightarrow a top element **1** : A,
 - ightarrow a binary meet operation \wedge : A ightarrow A,
 - → a join operation \bigvee _ : Fam_W(A) → A;
 - → satisfying distributivity i.e. $x \land \bigvee_{i:1} y_i = \bigvee_{i:1} x \land y_i$ for every x : A and W-family $(y_i)_{i:1}$ in A.

Large, locally small, and small-complete frame: $(\mathcal{U}^+, \mathcal{U}, \mathcal{U})$ -frame.

Curi [Cur10] previously showed:

CZF cannot prove that certain classes of nontrivial complete lattices (including join-lattices, dcpos, and frames) are small.

He achieves this by showing that CZF is consistent with an anti-classical principle called Generalized Uniformity Principle (GUP).

de Jong and Escardó gave an analogous result [d]E23] in the style of **reverse constructive mathematics** [lsh06].

They show **directly** that certain results cannot be obtained predicatively, by deriving resizing axioms from them.

Theorem

If there exists a nontrivial small frame then Ω -resizing holds.

Curi [Cur10] previously showed:

CZF cannot prove that certain classes of nontrivial complete lattices (including join-lattices, dcpos, and frames) are small.

He achieves this by showing that CZF is consistent with an anti-classical principle called Generalized Uniformity Principle (GUP).

de Jong and Escardó gave an analogous result [d]E23] in the style of **reverse constructive mathematics** [lsh06].

They show **directly** that certain results cannot be obtained predicatively, by deriving resizing axioms from them.

Theorem

If there exists a nontrivial small frame then Ω -resizing holds.

A predicative investigation of locale theory in HoTT/UF **must** focus on large and small-complete frames.

For us, **frame** means $(\mathcal{U}^+, \mathcal{U}, \mathcal{U})$ -frame (over some base universe \mathcal{U}).

Frm_{\mathcal{U}}: the category of such frames and frame homomorphisms. **Loc**_{\mathcal{U}}: the opposite of this category.

We denote by $\mathcal{O}(X)$ the frame defining a locale X.

A continuous map $f: X \to Y$ of locales is given by a homomorphism $f^*: \mathcal{O}(Y) \to \mathcal{O}(X)$.

Definition (Weak base)

A family $(B_i)_{i:1}$ of opens forms a weak base for locale X if

for every $U : \mathcal{O}(X)$, there is an unspecified, directed, small family $(i_j)_{j:J}$ on the base index satisfying $U = \bigvee_{i:J} B_{i_j}$.

Compact and spectral locales

To write the definition of spectral locale in HoTT/UF, we look it up in a standard textbook...

We define a locale A to be *coherent* if (i) Every element of A is expressible as a join of finite elements, and

64 II: Introduction to locales

(ii) The finite elements form a sublattice of A – equivalently (by the Lemma), 1 is finite, and the meet of two finite elements is finite.

Definition (Compact open)

An open $U : \mathcal{O}(X)$ is called **compact** if for every directed family $(V_i)_{i:l}$ with $U \leq \bigvee_{i:l} V_i$, there is some k : l such that $U \leq V_k$.

Same as the "covers have finite subcovers" definition but with Kuratowski finiteness.

We define $K^+(X) :\equiv \Sigma_{(U : \mathcal{O}(X))}$ is-compact(U).

→ Observe that this type is **large** i.e. lives in U^+ .

Definition (Compact locale)

A **compact locale** is one in which the top open 1 is compact.

Definition (Compact open)

An open $U : \mathcal{O}(X)$ is called **compact** if for every directed family $(V_i)_{i:l}$ with $U \leq \bigvee_{i:l} V_i$, there is some k : l such that $U \leq V_k$.

Same as the "covers have finite subcovers" definition but with Kuratowski finiteness.

We define K⁺(X) :≡ Σ_{(U: O(X))} is-compact(U).
→ Observe that this type is large i.e. lives in U⁺.

Definition (Compact locale)

A **compact locale** is one in which the top open 1 is compact.

Definition (Compact open)

An open $U : \mathcal{O}(X)$ is called **compact** if for every directed family $(V_i)_{i:l}$ with $U \leq \bigvee_{i:l} V_i$, there is some k : l such that $U \leq V_k$.

Same as the "covers have finite subcovers" definition but with Kuratowski finiteness.

We define $K^+(X) :\equiv \Sigma_{(U : \mathcal{O}(X))}$ is-compact(U).

→ Observe that this type is **large** i.e. lives in U^+ .

Definition (Compact locale)

A **compact locale** is one in which the top open 1 is compact.

Definition (Compact open)

An open $U : \mathcal{O}(X)$ is called **compact** if for every directed family $(V_i)_{i:l}$ with $U \leq \bigvee_{i:l} V_i$, there is some k : l such that $U \leq V_k$.

Same as the "covers have finite subcovers" definition but with Kuratowski finiteness.

We define $K^+(X) :\equiv \Sigma_{(U : \mathcal{O}(X))}$ is-compact(U).

→ Observe that this type is **large** i.e. lives in U^+ .

Definition (Compact locale)

A compact locale is one in which the top open 1 is compact.

Definition (Spectral locale) [Tos25; AET24]

A locale X is called **spectral** if it satisfies the following conditions:

- * (SP1) It is compact (i.e. the empty meet is compact).
- * (SP2) Compact opens are closed under binary meets.
- * (SP3) The type $K^+(X)$ forms a weak base.
- * (SP4) The type $K^+(X)$ is small.
- → A continuous map $f : X \to Y$ is called **spectral** if $f^*(K)$ is a compact open of Y for every compact open K of X.

$\textbf{Spec}_{\mathcal{U}}:$ the category of spectral locales and spectral maps.

Lemma

Univalence implies that being spectral is a proposition.

Univalence seems to be required to write down the property expressing the mathematical notion in consideration!

Definition (Spectral locale) [Tos25; AET24]

A locale X is called **spectral** if it satisfies the following conditions:

- * (SP1) It is compact (i.e. the empty meet is compact).
- * (SP2) Compact opens are closed under binary meets.
- * (SP3) The type $K^+(X)$ forms a weak base.
- * (SP4) The type $K^+(X)$ is small.
- → A continuous map $f: X \to Y$ is called **spectral** if $f^*(K)$ is a compact open of Y for every compact open K of X.

 $\textbf{Spec}_{\mathcal{U}}:$ the category of spectral locales and spectral maps.

Lemma

Univalence implies that being spectral is a proposition.

Univalence seems to be required to write down the property expressing the mathematical notion in consideration!

Definition (Spectral locale) [Tos25; AET24]

A locale X is called **spectral** if it satisfies the following conditions:

- * (SP1) It is compact (i.e. the empty meet is compact).
- * (SP2) Compact opens are closed under binary meets.
- * (SP3) The type $K^+(X)$ forms a weak base.
- * (SP4) The type $K^+(X)$ is small.
- → A continuous map $f: X \to Y$ is called **spectral** if $f^*(K)$ is a compact open of Y for every compact open K of X.

 $\textbf{Spec}_{\mathcal{U}}:$ the category of spectral locales and spectral maps.

Lemma

Univalence implies that being spectral is a proposition.

Univalence seems to be required to write down the property expressing the mathematical notion in consideration!

Definition (Small distributive lattice)

A distributive *U*-lattice consists of

- * a set |L| : \mathcal{U} ,
- * elements $\mathbf{0}, \mathbf{1}$: |L|,
- * operations \wedge : $|L| \rightarrow |L| \rightarrow |L|$ and \vee : $|L| \rightarrow |L| \rightarrow |L|,$
- * satisfying the laws of associativity, commutativity, unitality, idempotence, and absorption.

 $\textbf{DLat}_{\mathcal{U}}:$ the category of distributive $\mathcal{U}\text{-}lattices$ or small distributive lattices.

Definition (Ideal)

A \mathcal{U} -ideal of a distributive lattice L is a subset I : L $\rightarrow \Omega_{\mathcal{U}}$ satisfying the conditions:

- * inhabitedness,
- * downward closedness,
- * closedness under binary joins.

For every distributive \mathcal{U} -lattice L, the type $Idl_{\mathcal{U}}(L)$ forms a frame i.e. a **large**, **locally** small, and small-complete frame.

Lemma

For every distributive \mathcal{U} -lattice L, the frame $Idl_{\mathcal{U}}(L)$ is spectral.

The **spectrum of** *L* is the locale defined by $Idl_{\mathcal{U}}(L)$.

→ We denote this by Spec(L).

- → Classically: we work with the ideals $L \rightarrow \mathbf{2}$.
- → Constructively but impredicatively: we work with the ideals $L \rightarrow \Omega$.
- → Constructively and predicatively: we work with the ideals $L \rightarrow \Omega_{U}$.

For every distributive \mathcal{U} -lattice L, the type $Idl_{\mathcal{U}}(L)$ forms a frame i.e. a **large**, **locally** small, and small-complete frame.

Lemma

For every distributive \mathcal{U} -lattice *L*, the frame $Idl_{\mathcal{U}}(L)$ is spectral.

The **spectrum of** *L* is the locale defined by $Idl_{\mathcal{U}}(L)$.

→ We denote this by Spec(L).

- → Classically: we work with the ideals $L \rightarrow 2$.
- → Constructively but impredicatively: we work with the ideals $L \rightarrow \Omega$.
- → Constructively and predicatively: we work with the ideals $L \rightarrow \Omega_{U}$.

For every distributive \mathcal{U} -lattice L, the type $Idl_{\mathcal{U}}(L)$ forms a frame i.e. a **large**, **locally** small, and small-complete frame.

Lemma

For every distributive \mathcal{U} -lattice *L*, the frame $Idl_{\mathcal{U}}(L)$ is spectral.

The **spectrum of** *L* is the locale defined by $IdI_{\mathcal{U}}(L)$.

→ We denote this by Spec(L).

- → Classically: we work with the ideals $L \rightarrow 2$.
- → Constructively but impredicatively: we work with the ideals $L \rightarrow \Omega$.
- → Constructively and predicatively: we work with the ideals $L \rightarrow \Omega_{U}$.

For every distributive \mathcal{U} -lattice L, the type $Idl_{\mathcal{U}}(L)$ forms a frame i.e. a **large**, **locally** small, and small-complete frame.

Lemma

For every distributive \mathcal{U} -lattice *L*, the frame $Idl_{\mathcal{U}}(L)$ is spectral.

The **spectrum of** *L* is the locale defined by $IdI_{\mathcal{U}}(L)$.

→ We denote this by Spec(L).

- → Classically: we work with the ideals $L \rightarrow \mathbf{2}$.
- → Constructively but impredicatively: we work with the ideals $L \rightarrow \Omega$.
- → Constructively and predicatively: we work with the ideals $L \rightarrow \Omega_{U}$.

Recall that the type $K^+(X)$ is a priori large — it lives in U^+ .

→ In other words, it falls in the category $DLat_{\mathcal{U}^+}$ and not $DLat_{\mathcal{U}}$.

Condition (SP4) gives us a specified, small type X_0 such that

 $K^+(X) \simeq X_o.$

Lemma

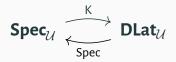
For every \mathcal{V} -distributive lattice *L*, if the carrier set |L| is \mathcal{U} -small then *L* has a copy in \mathcal{U} i.e. is isomorphic to a specified \mathcal{U} -distributive lattice.

→ We just transport the lattice structure through the equivalence, which is always a lattice isomorphism.

Lemma

For every spectral locale X, we have a specified, small distributive lattice K(X).

We have thus constructed maps:



Proposition

Assuming univalence (twice), the maps K and Spec form a type equivalence.

- → We thus have an equivalence $Spec_{\mathcal{U}} \simeq DLat_{\mathcal{U}}$.
- → Observe that $\mathbf{Spec}_{\mathcal{U}} : \mathcal{U}^{++}$ and $\mathbf{DLat}_{\mathcal{U}} : \mathcal{U}^{+}$, but the result says $\mathbf{Spec}_{\mathcal{U}}$ is \mathcal{U}^{+} -small.

Recall that a spectral map is a continuous function $f: X \to Y$ such that

 $\Pi_{(V : \mathcal{O}(Y))} V$ is compact $\to f^*(K)$ is compact.

This is a mapping $K^+(Y) \to K^+(X)$.

We define maps:

- → $K : Hom(X, Y) \to Hom(K(Y), K(X))$
- → Spec : Hom(K, L) → Hom(Spec(L), Spec(K))

Theorem

The above functors form a categorical equivalence.

Recall that a spectral map is a continuous function $f: X \to Y$ such that

 $\Pi_{(V : \mathcal{O}(Y))} V$ is compact $\to f^*(K)$ is compact.

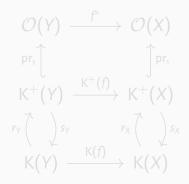
This is a mapping $K^+(Y) \to K^+(X)$.

We define maps:

- → $K : Hom(X, Y) \to Hom(K(Y), K(X))$
- → Spec : Hom(K, L) → Hom(Spec(L), Spec(K))

Theorem

The above functors form a categorical equivalence.



Recall that a spectral map is a continuous function $f: X \rightarrow Y$ such that

 $\Pi_{(V:\mathcal{O}(Y))}V$ is compact $\to f^*(K)$ is compact.

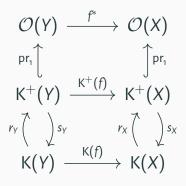
This is a mapping $K^+(Y) \to K^+(X)$.

We define maps:

- → $K : Hom(X, Y) \to Hom(K(Y), K(X))$
- → Spec : Hom(K, L) → Hom(Spec(L), Spec(K))

Theorem

The above functors form a categorical equivalence.



- → We can obtain a predicative form of Stone duality by considering $\Omega_{\mathcal{U}}$ -valued ideals on \mathcal{U} -small lattices.
- → Alternative to formal topology.
- → This fits well into our investigation of predicative locale theory in the category of large, locally small, and small-complete locales.
- → Completely formalized in AGDA as part of TYPETOPOLOGY.
- → TODO: Patch of a spectral locale should give the free Boolean extension of a distributive lattice.
 - Constructed in previous work [AET24].
- → TODO: Constructive and predicative Priestley duality.
- → TODO: Spectrum of a commutative ring?
- → TODO: Further investigation of links with Tom de Jong's doctoral work on domain theory [d]on23].
 - Especially through the notion of superspectral locale.
- → AGDA formalization in literate programming style:
 - https://martinescardo.github.io/TypeTopology/Locales.StoneDuality. ForSpectralLocales.html

- → We can obtain a predicative form of Stone duality by considering $\Omega_{\mathcal{U}}$ -valued ideals on \mathcal{U} -small lattices.
- → Alternative to formal topology.
- → This fits well into our investigation of predicative locale theory in the category of large, locally small, and small-complete locales.
- → Completely formalized in AGDA as part of TYPETOPOLOGY.
- → TODO: Patch of a spectral locale should give the **free Boolean extension** of a distributive lattice.
 - Constructed in previous work [AET24].
- → TODO: Constructive and predicative Priestley duality.
- → TODO: Spectrum of a commutative ring?
- \rightarrow TODO: Further investigation of links with Tom de Jong's doctoral work on domain theory [d]on23].
 - Especially through the notion of superspectral locale.
- → AGDA formalization in literate programming style:
 - https://martinescardo.github.io/TypeTopology/Locales.StoneDuality. ForSpectralLocales.html

- → We can obtain a predicative form of Stone duality by considering Ω_U -valued ideals on U-small lattices.
- → Alternative to formal topology.
- → This fits well into our investigation of predicative locale theory in the category of large, locally small, and small-complete locales.
- → Completely formalized in AGDA as part of TYPETOPOLOGY.
- → TODO: Patch of a spectral locale should give the **free Boolean extension** of a distributive lattice.
 - Constructed in previous work [AET24].
- → TODO: Constructive and predicative Priestley duality.
- → TODO: Spectrum of a commutative ring?
- \rightarrow TODO: Further investigation of links with Tom de Jong's doctoral work on domain theory [d]on23].
 - Especially through the notion of superspectral locale.
- → AGDA formalization in literate programming style:
 - https://martinescardo.github.io/TypeTopology/Locales.StoneDuality. ForSpectralLocales.html

References

References i

[AET24] Igor Arrieta, Martín H. Escardó, and Ayberk Tosun.
"The Patch Topology in Univalent Foundations".
Preprint accepted for publication in MSCS special issue on Advances in HoTT. Feb. 2024.
URL: https://arxiv.org/abs/2402.03134 (cit. on pp. 38–40, 51–53).

- [Cur10] Giovanni Curi. "On some peculiar aspects of the constructive theory of point-free spaces". In: Mathematical Logic Quarterly 56.4 (2010), pp. 375–387. DOI: 10.1002/malq.200910037 (cit. on pp. 28–29).
- [d]E23] Tom de Jong and Martín H. Escardó. "On Small Types in Univalent Foundations". In: Logical Methods in Computer Science Volume 19, Issue 2 (May 2023).
 DOI: 10.46298/lmcs-19(2:8)2023. URL: https://lmcs.episciences.org/11270 (cit. on pp. 23-24, 28-29).
- [d]0n23] Tom de Jong. "Domain theory in constructive and predicative univalent foundations". PhD thesis. Birmingham B15 2TT, UK: University of Birmingham, 2023 (cit. on pp. 51–53).

References ii

[Ish06] Hajime Ishihara. "Reverse Mathematics in Bishop's Constructive Mathematics". In: Philosophia Scientiae CS 6 (2006), pp. 43–59. DOI: 10.4000/philosophiascientiae.406 (cit. on pp. 28–29).

[Sto36] Marshall H. Stone. "The theory of representations for Boolean algebras". In: Transactions of the American Mathematical Society 40.1 (1936), pp. 37–111 (cit. on pp. 2–6).

[Sto37] Marshall H. Stone.

"Topological representation of distributive lattices and Brouwerian Logics".

In: Časopis pro pěstování matematiky a fysiky 67 (1937), pp. 1–25 (cit. on pp. 2–6).

[Tos25] Ayberk Tosun. **"Constructive and Predicative Locale Theory in Univalent Foundations".** Accepted, to be published.

PhD thesis. Birmingham B15 2TT, UK: University of Birmingham, June 11, 2025 (cit. on pp. 38–40).