
Implementing a Typechecker for an Esoteric Language:
Experiences, Challenges, and Lessons

Alex Rice

TYPES 2025, Glasgow



Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Overview

Exploration of general design principles for writing typecheckers and evaluators.

Alex Rice 1



Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Overview

Exploration of general design principles for writing typecheckers and evaluators.

What this talk is

✔ An experience report

What this talk isn’t

Alex Rice 1



Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Overview

Exploration of general design principles for writing typecheckers and evaluators.

What this talk is

✔ An experience report

What this talk isn’t

❌ A novel framework

Alex Rice 1



Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Overview

Exploration of general design principles for writing typecheckers and evaluators.

What this talk is

✔ An experience report

✔ Dispelling of folklore

What this talk isn’t

❌ A novel framework

Alex Rice 1



Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Overview

Exploration of general design principles for writing typecheckers and evaluators.

What this talk is

✔ An experience report

✔ Dispelling of folklore

What this talk isn’t

❌ A novel framework
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The Language

… has no lambda abstraction.
… has no application.
… has no function types.
… is dependently typed.
… inference in certain places but no unification.
… but does have decidable typechecking.

Can we leverage the existing literature to write our typechecker?

Yes∗! We utilise bidirectional typechecking + normalisation by evaluation (NbE).
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Anatomy of the Interpreter

parsing/printing

check

infer

to_raw

eval

quote

Raw syntax

Text

Core syntax
Normal-form

syntax
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Experience: NbE works in non-standard environments

We want:
• A well-specified set of canonical forms.
• To interpret each operation of the language on these canonical forms.

But we started with:
• a confluent terminating rewriting relation,
• but no satisfying definition of “normal form.”

Our normal form syntax doesn’t need to be perfect to see benefits.

The form of the algorithm NbE takes encourages us to be efficient.
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Experience: NbE works in non standard environments

My intuition of NbE (from an implementation perspective):

Instead of evaluating term 𝑡, instead evaluate 𝑡 in an environment 𝜌.

𝜌 : Env 𝑡 : Core Term
eval𝜌(𝑡) : Normal-form Term

We evaluate 𝑡[𝜎] for a substitution: 𝜎 = [𝑛1/𝑥1, …, 𝑛𝑘/𝑥𝑘]
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NbE example

Suppose we want to calculate:

eval𝜌(𝑡[𝜎]) where 𝜎 = [𝑠1/𝑥1, …, 𝑠𝑘/𝑥𝑘])

At some point, we should evaluate 𝑡, but in what environment?
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NbE example

Suppose we want to calculate:

eval𝜌(𝑡[𝜎]) where 𝜎 = [𝑠1/𝑥1, …, 𝑠𝑘/𝑥𝑘])

At some point, we should evaluate 𝑡, but in what environment?

𝑡[𝜎][𝜌] = 𝑡[𝑠1/𝑥1, …, 𝑠𝑘/𝑥𝑘])[𝜌]
= 𝑡[𝑠1[𝜌]/𝑥1, …, 𝑠𝑘[𝜌]/𝑥𝑘]

= 𝑡[eval𝜌(𝑠1)/𝑥1, …, eval𝜌(𝑠𝑘)/𝑥𝑘]

Therefore: eval𝜌(𝑡[𝜎]) ≔ evaleval𝜌(𝜎)(𝑡)
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Lesson: Core syntax can represent “internal” operations

Substitution is used during reduction.

…𝐴… ⇝ …𝐴[𝜄]…

We already know how to evaluate 𝐴[𝜄]
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Lesson: Core syntax can represent “internal” operations

Substitution is used during reduction.

…𝐴… ⇝ …𝐴[𝜄]…

We already know how to evaluate 𝐴[𝜄]

… except 𝐴[𝜄] isn’t part of the language’s syntax.

Solution: add it anyway.

…𝐴… ⇝ …𝐴[𝜄0] ⇝ …𝐴[𝜄0][𝜄1]… ⇝ …𝐴[𝜄0][𝜄1][𝜄2]…
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Lesson: Variable names are stored in the context/binders

The raw syntax has named variables.

But in the core and normal-form syntax, we use de Bruijn levels.
• Makes evaluation of variable easy.
• Avoids 𝛼-renaming.
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Lesson: Variable names are stored in the context/binders

The raw syntax has named variables.

But in the core and normal-form syntax, we use de Bruijn levels.
• Makes evaluation of variable easy.
• Avoids 𝛼-renaming.

However, variable names chosen by a programmer are often meaningful.

Storing variable names in the context avoids duplication of information.

Top level symbols form an exception to this rule.
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Lesson: Error handling

Type systems can help programmers Programmers are not perfect
Errors can help the programmer

The user will likely want to know where the error happened.

Attempt 1: Add spans to raw syntax:

   Term = Var Name Range<int> | ...
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Lesson: Error handling

Type systems can help programmers Programmers are not perfect
Errors can help the programmer

The user will likely want to know where the error happened.

Attempt 1: Add spans to raw syntax:

   Term = Var Name Range<int> | ...

Attempt 2: Add a generic type annotation to raw syntax:

   Term<S> = Var Name S | ...
   Error<S> = UnknownVariable Name S | ...
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Lesson: Error handling

Type systems can help programmers Programmers are not perfect
Errors can help the programmer

The user will likely want to know where the error happened.

Attempt 1: Add spans to raw syntax:

   Term = Var Name Range<int> | ...

Attempt 2: Add a generic type annotation to raw syntax:

   Term<Range<int>> = Var Name Range<int> | ...
   Error<Range<int>> = UnknownVariable Name Range<int> | ...
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Lesson: Error handling

Type systems can help programmers Programmers are not perfect
Errors can help the programmer

The user will likely want to know where the error happened.

Attempt 1: Add spans to raw syntax:

   Term = Var Name Range<int> | ...

Attempt 2: Add a generic type annotation to raw syntax:

   Term<Unit> = Var Name Unit | ...
   Error<Unit> = UnknownVariable Name Unit | ...
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Challenge: I am not a perfect programmer
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Challenge: I am not a perfect programmer
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Challenge: I am not a perfect programmer

The ability to verify/re-typecheck terms would help debug errors.

Can we pass through the same typechecking function again?

Re-typechecking involves passing through raw syntax.

Can we independently verify core/normal-form syntax?

Any typechecking depends on evaluation.

Can we at least nicely print core/normal-form syntax?

Not automatically.
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Scoped syntax?
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Challenge: I am not a perfect programmer

Scoped syntax?
Smaller
Kernel?

“Pretty” debug
printing?

Formalise
everything?
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Challenge/Propaganda: Beyond a typechecker

Typechecker

Interaction?

Language
server?

Further
tooling?
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Conclusions

• I created a typechecker for a non-standard language.

• Even with the language being non-standard, it was still possible to adapt
common techniques.

• Despite this, it is easy to make mistakes.

• It’s difficult to retroactively add tooling to a language.

• Tell me why this set up is wrong!
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