
Implementing a Typechecker for an Esoteric Language:
Experiences, Challenges, and Lessons

Alex Rice

TYPES 2025, Glasgow

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Overview

Exploration of general design principles for writing typecheckers and evaluators.

Alex Rice 1

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Overview

Exploration of general design principles for writing typecheckers and evaluators.

What this talk is

✔ An experience report

What this talk isn’t

Alex Rice 1

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Overview

Exploration of general design principles for writing typecheckers and evaluators.

What this talk is

✔ An experience report

What this talk isn’t

❌ A novel framework

Alex Rice 1

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Overview

Exploration of general design principles for writing typecheckers and evaluators.

What this talk is

✔ An experience report

✔ Dispelling of folklore

What this talk isn’t

❌ A novel framework

Alex Rice 1

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Overview

Exploration of general design principles for writing typecheckers and evaluators.

What this talk is

✔ An experience report

✔ Dispelling of folklore

What this talk isn’t

❌ A novel framework

❌ Language specific

Alex Rice 1

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

The Language

… has no lambda abstraction.
… has no application.
… has no function types.
… is dependently typed.
… inference in certain places but no unification.
… but does have decidable typechecking.

Alex Rice 2

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

The Language

… has no lambda abstraction.
… has no application.
… has no function types.
… is dependently typed.
… inference in certain places but no unification.
… but does have decidable typechecking.

Can we leverage the existing literature to write our typechecker?

Alex Rice 2

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

The Language

… has no lambda abstraction.
… has no application.
… has no function types.
… is dependently typed.
… inference in certain places but no unification.
… but does have decidable typechecking.

Can we leverage the existing literature to write our typechecker?

Yes∗!

Alex Rice 2

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

The Language

… has no lambda abstraction.
… has no application.
… has no function types.
… is dependently typed.
… inference in certain places but no unification.
… but does have decidable typechecking.

Can we leverage the existing literature to write our typechecker?

Yes∗! We utilise bidirectional typechecking + normalisation by evaluation (NbE).

Alex Rice 2

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Anatomy of the Interpreter

parsing/printing

check

infer

to_raw

eval

quote

Raw syntax

Text

Core syntax
Normal-form

syntax

Alex Rice 3

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Experience: NbE works in non-standard environments

We want:
• A well-specified set of canonical forms.
• To interpret each operation of the language on these canonical forms.

But we started with:
• a confluent terminating rewriting relation,
• but no satisfying definition of “normal form.”

Our normal form syntax doesn’t need to be perfect to see benefits.

The form of the algorithm NbE takes encourages us to be efficient.

Alex Rice 4

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Experience: NbE works in non standard environments

My intuition of NbE (from an implementation perspective):

Instead of evaluating term 𝑡, instead evaluate 𝑡 in an environment 𝜌.

𝜌 : Env 𝑡 : Core Term
eval𝜌(𝑡) : Normal-form Term

We evaluate 𝑡[𝜎] for a substitution: 𝜎 = [𝑛1/𝑥1, …, 𝑛𝑘/𝑥𝑘]

Alex Rice 5

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

NbE example

Suppose we want to calculate:

eval𝜌(𝑡[𝜎]) where 𝜎 = [𝑠1/𝑥1, …, 𝑠𝑘/𝑥𝑘])

At some point, we should evaluate 𝑡, but in what environment?

Alex Rice 6

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

NbE example

Suppose we want to calculate:

eval𝜌(𝑡[𝜎]) where 𝜎 = [𝑠1/𝑥1, …, 𝑠𝑘/𝑥𝑘])

At some point, we should evaluate 𝑡, but in what environment?

𝑡[𝜎][𝜌] = 𝑡[𝑠1/𝑥1, …, 𝑠𝑘/𝑥𝑘])[𝜌]
= 𝑡[𝑠1[𝜌]/𝑥1, …, 𝑠𝑘[𝜌]/𝑥𝑘]

= 𝑡[eval𝜌(𝑠1)/𝑥1, …, eval𝜌(𝑠𝑘)/𝑥𝑘]

Therefore: eval𝜌(𝑡[𝜎]) ≔ evaleval𝜌(𝜎)(𝑡)

Alex Rice 6

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Lesson: Core syntax can represent “internal” operations

Substitution is used during reduction.

…𝐴… ⇝ …𝐴[𝜄]…

We already know how to evaluate 𝐴[𝜄]

Alex Rice 7

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Lesson: Core syntax can represent “internal” operations

Substitution is used during reduction.

…𝐴… ⇝ …𝐴[𝜄]…

We already know how to evaluate 𝐴[𝜄]

… except 𝐴[𝜄] isn’t part of the language’s syntax.

Alex Rice 7

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Lesson: Core syntax can represent “internal” operations

Substitution is used during reduction.

…𝐴… ⇝ …𝐴[𝜄]…

We already know how to evaluate 𝐴[𝜄]

… except 𝐴[𝜄] isn’t part of the language’s syntax.

Solution: add it anyway.

…𝐴… ⇝ …𝐴[𝜄0] ⇝ …𝐴[𝜄0][𝜄1]… ⇝ …𝐴[𝜄0][𝜄1][𝜄2]…

Alex Rice 7

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Lesson: Variable names are stored in the context/binders

The raw syntax has named variables.

But in the core and normal-form syntax, we use de Bruijn levels.
• Makes evaluation of variable easy.
• Avoids 𝛼-renaming.

Alex Rice 8

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Lesson: Variable names are stored in the context/binders

The raw syntax has named variables.

But in the core and normal-form syntax, we use de Bruijn levels.
• Makes evaluation of variable easy.
• Avoids 𝛼-renaming.

However, variable names chosen by a programmer are often meaningful.

Storing variable names in the context avoids duplication of information.

Top level symbols form an exception to this rule.

Alex Rice 8

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Lesson: Error handling

Type systems can help programmers Programmers are not perfect
Errors can help the programmer

The user will likely want to know where the error happened.

Attempt 1: Add spans to raw syntax:

 Term = Var Name Range<int> | ...

Alex Rice 9

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Lesson: Error handling

Type systems can help programmers Programmers are not perfect
Errors can help the programmer

The user will likely want to know where the error happened.

Attempt 1: Add spans to raw syntax:

 Term = Var Name Range<int> | ...

Attempt 2: Add a generic type annotation to raw syntax:

 Term<S> = Var Name S | ...
 Error<S> = UnknownVariable Name S | ...

Alex Rice 9

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Lesson: Error handling

Type systems can help programmers Programmers are not perfect
Errors can help the programmer

The user will likely want to know where the error happened.

Attempt 1: Add spans to raw syntax:

 Term = Var Name Range<int> | ...

Attempt 2: Add a generic type annotation to raw syntax:

 Term<Range<int>> = Var Name Range<int> | ...
 Error<Range<int>> = UnknownVariable Name Range<int> | ...

Alex Rice 9

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Lesson: Error handling

Type systems can help programmers Programmers are not perfect
Errors can help the programmer

The user will likely want to know where the error happened.

Attempt 1: Add spans to raw syntax:

 Term = Var Name Range<int> | ...

Attempt 2: Add a generic type annotation to raw syntax:

 Term<Unit> = Var Name Unit | ...
 Error<Unit> = UnknownVariable Name Unit | ...

Alex Rice 9

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Challenge: I am not a perfect programmer

Alex Rice 10

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Challenge: I am not a perfect programmer

parsing/printing

check

infer

to_raw

eval

quote

Raw syntax

Text

Core syntax
Normal-form

syntax

Alex Rice 10

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Challenge: I am not a perfect programmer

parsing/printing

check

infer

to_raw

eval

quote

Raw syntax

Text

Well-typed?
Core syntax

Normal-form
syntax

Alex Rice 10

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Challenge: I am not a perfect programmer

parsing/printing

check

infer

to_raw

eval

quote

Raw syntax

Text

Well-typed?
Core syntax

Well-typed??
Normal-form

syntax

Alex Rice 10

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Challenge: I am not a perfect programmer

parsing/printing

check

infer

to_raw

eval

quote

Raw syntax

Text

Well-typed???
Core syntax

Well-typed??
Normal-form

syntax

Alex Rice 10

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Challenge: I am not a perfect programmer

The ability to verify/re-typecheck terms would help debug errors.

Can we pass through the same typechecking function again?

Re-typechecking involves passing through raw syntax.

Can we independently verify core/normal-form syntax?

Any typechecking depends on evaluation.

Can we at least nicely print core/normal-form syntax?

Not automatically.

Alex Rice 11

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Challenge: I am not a perfect programmer

Scoped syntax?

Alex Rice 12

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Challenge: I am not a perfect programmer

Scoped syntax?
Smaller
Kernel?

Alex Rice 12

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Challenge: I am not a perfect programmer

Scoped syntax?
Smaller
Kernel?

“Pretty” debug
printing?

Alex Rice 12

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Challenge: I am not a perfect programmer

Scoped syntax?
Smaller
Kernel?

“Pretty” debug
printing?

Formalise
everything?

Alex Rice 12

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Challenge/Propaganda: Beyond a typechecker

Typechecker

Interaction?

Language
server?

Further
tooling?

Alex Rice 13

Implementing a Typechecker for an Esoteric Language: Experiences, Challenges, and Lessons

Conclusions

• I created a typechecker for a non-standard language.

• Even with the language being non-standard, it was still possible to adapt
common techniques.

• Despite this, it is easy to make mistakes.

• It’s difficult to retroactively add tooling to a language.

• Tell me why this set up is wrong!

Alex Rice 14

	Overview
	What this talk is
	What this talk isn't

	The Language
	Can we leverage the existing literature to write our typechecker?

	Anatomy of the Interpreter
	Experience: NbE works in non-standard environments
	Experience: NbE works in non standard environments
	My intuition of NbE (from an implementation perspective):

	NbE example
	Lesson: Core syntax can represent "internal" operations
	Solution: add it anyway.

	Lesson: Variable names are stored in the context/binders
	Storing variable names in the context avoids duplication of information.

	Lesson: Error handling
	Challenge: I am not a perfect programmer
	Challenge: I am not a perfect programmer
	Can we pass through the same typechecking function again?
	Can we independently verify core/normal-form syntax?
	Can we at least nicely print core/normal-form syntax?

	Challenge: I am not a perfect programmer
	Challenge/Propaganda: Beyond a typechecker
	Conclusions

