
TowardsQuotient Inductive Types
in Observational Type Theory

Thiago Felicissimo & Nicolas Tabareau

31st International Conference on Types for Proofs and Programs
11 June 2025

Gallinette, INRIA, Nantes

1

Quotient Inductive Types (QITs)
Inductive Types allow the declaration of generators:

Inductive List (𝐴 : Type) : Type :=

InductiveMSet (𝐴 : Type) : Type :=

| [] : List 𝐴

| [] : MSet 𝐴

| _ :: _ (𝑥 : 𝐴) (𝑚 : List 𝐴) : List 𝐴

| _ :: _ (𝑥 : 𝐴) (𝑚 : MSet 𝐴) : MSet 𝐴

| MSet= (𝑥 𝑦 : 𝐴) (𝑚 : MSet 𝐴) : (𝑥 :: 𝑦 ::𝑚) = (𝑦 :: 𝑥 ::𝑚)

Implicitly an hSet (in this talk, I only consider theories with UIP).

Functions eliminating a QIT must respect equality:
Fixpoint sum (𝑙 : MSet Nat) : Nat :=
match 𝑙 with

| [] → 0 | 𝑥 ::𝑚 → 𝑥 + (sum𝑚)
| MSet= 𝑥 𝑦 𝑚 → (. . .) : (𝑥 + 𝑦 + sum𝑚) = (𝑦 + 𝑥 + sum𝑚)

2

Quotient Inductive Types (QITs)
Quotient Inductive Types (QITs) allow the declaration of generators and equations:

InductiveMSet (𝐴 : Type) : Type :=
| [] : MSet 𝐴

| _ :: _ (𝑥 : 𝐴) (𝑚 : MSet 𝐴) : MSet 𝐴

| MSet= (𝑥 𝑦 : 𝐴) (𝑚 : MSet 𝐴) : (𝑥 :: 𝑦 ::𝑚) = (𝑦 :: 𝑥 ::𝑚)

Implicitly an hSet (in this talk, I only consider theories with UIP).

Functions eliminating a QIT must respect equality:
Fixpoint sum (𝑙 : MSet Nat) : Nat :=
match 𝑙 with

| [] → 0 | 𝑥 ::𝑚 → 𝑥 + (sum𝑚)
| MSet= 𝑥 𝑦 𝑚 → (. . .) : (𝑥 + 𝑦 + sum𝑚) = (𝑦 + 𝑥 + sum𝑚)

2

Quotient Inductive Types (QITs)
Quotient Inductive Types (QITs) allow the declaration of generators and equations:

InductiveMSet (𝐴 : Type) : Type :=
| [] : MSet 𝐴

| _ :: _ (𝑥 : 𝐴) (𝑚 : MSet 𝐴) : MSet 𝐴

| MSet= (𝑥 𝑦 : 𝐴) (𝑚 : MSet 𝐴) : (𝑥 :: 𝑦 ::𝑚) = (𝑦 :: 𝑥 ::𝑚)

Implicitly an hSet (in this talk, I only consider theories with UIP).

Functions eliminating a QIT must respect equality:
Fixpoint sum (𝑙 : MSet Nat) : Nat :=
match 𝑙 with

| [] → 0 | 𝑥 ::𝑚 → 𝑥 + (sum𝑚)
| MSet= 𝑥 𝑦 𝑚 → (. . .) : (𝑥 + 𝑦 + sum𝑚) = (𝑦 + 𝑥 + sum𝑚)

2

Quotient Inductive Types (QITs)
Quotient Inductive Types (QITs) allow the declaration of generators and equations:

InductiveMSet (𝐴 : Type) : Type :=
| [] : MSet 𝐴

| _ :: _ (𝑥 : 𝐴) (𝑚 : MSet 𝐴) : MSet 𝐴

| MSet= (𝑥 𝑦 : 𝐴) (𝑚 : MSet 𝐴) : (𝑥 :: 𝑦 ::𝑚) = (𝑦 :: 𝑥 ::𝑚)

Implicitly an hSet (in this talk, I only consider theories with UIP).

Functions eliminating a QIT must respect equality:
Fixpoint sum (𝑙 : MSet Nat) : Nat :=
match 𝑙 with

| [] → 0 | 𝑥 ::𝑚 → 𝑥 + (sum𝑚)
| MSet= 𝑥 𝑦 𝑚 → (. . .) : (𝑥 + 𝑦 + sum𝑚) = (𝑦 + 𝑥 + sum𝑚) 2

Observational Type Theory (OTT) to the rescue
Problem In ITT (Coq, Agda, Lean), equality axioms of QIT can block computation:

(match (MSet= 𝑥 𝑦 𝑚) with | refl → 0) : Nat

In Altenkirch & McBride’s Observational Type Theory (OTT), equality is instead
eliminated using a cast operator:

𝐴, 𝐵 : Type 𝑝 : 𝐴 =Type 𝐵 𝑎 : 𝐴

cast𝐴{𝐵
𝑝 (𝑎) : 𝐵

Crucial property of OTT Computation rules for cast never look inside eq. proofs!

cast(𝐴×𝐵){(𝐴′×𝐵′)
𝑝 𝑡 −→ ⟨cast𝐴{𝐴′

𝑝.1 (𝜋1𝑡), cast𝐵{𝐵′
𝑝.2 (𝜋2𝑡)⟩

Thus, OTT accommodates desirable equality axioms (funext, propext, Q types)
without blocking computation.

3

Observational Type Theory (OTT) to the rescue
Problem In ITT (Coq, Agda, Lean), equality axioms of QIT can block computation:

(match (MSet= 𝑥 𝑦 𝑚) with | refl → 0) : Nat

In Altenkirch & McBride’s Observational Type Theory (OTT), equality is instead
eliminated using a cast operator:

𝐴, 𝐵 : Type 𝑝 : 𝐴 =Type 𝐵 𝑎 : 𝐴

cast𝐴{𝐵
𝑝 (𝑎) : 𝐵

Crucial property of OTT Computation rules for cast never look inside eq. proofs!

cast(𝐴×𝐵){(𝐴′×𝐵′)
𝑝 𝑡 −→ ⟨cast𝐴{𝐴′

𝑝.1 (𝜋1𝑡), cast𝐵{𝐵′
𝑝.2 (𝜋2𝑡)⟩

Thus, OTT accommodates desirable equality axioms (funext, propext, Q types)
without blocking computation.

3

Observational Type Theory (OTT) to the rescue
Problem In ITT (Coq, Agda, Lean), equality axioms of QIT can block computation:

(match (MSet= 𝑥 𝑦 𝑚) with | refl → 0) : Nat

In Altenkirch & McBride’s Observational Type Theory (OTT), equality is instead
eliminated using a cast operator:

𝐴, 𝐵 : Type 𝑝 : 𝐴 =Type 𝐵 𝑎 : 𝐴

cast𝐴{𝐵
𝑝 (𝑎) : 𝐵

Crucial property of OTT Computation rules for cast never look inside eq. proofs!

cast(𝐴×𝐵){(𝐴′×𝐵′)
𝑝 𝑡 −→ ⟨cast𝐴{𝐴′

𝑝.1 (𝜋1𝑡), cast𝐵{𝐵′
𝑝.2 (𝜋2𝑡)⟩

Thus, OTT accommodates desirable equality axioms (funext, propext, Q types)
without blocking computation.

3

Observational Type Theory (OTT) to the rescue
Problem In ITT (Coq, Agda, Lean), equality axioms of QIT can block computation:

(match (MSet= 𝑥 𝑦 𝑚) with | refl → 0) : Nat

In Altenkirch & McBride’s Observational Type Theory (OTT), equality is instead
eliminated using a cast operator:

𝐴, 𝐵 : Type 𝑝 : 𝐴 =Type 𝐵 𝑎 : 𝐴

cast𝐴{𝐵
𝑝 (𝑎) : 𝐵

Crucial property of OTT Computation rules for cast never look inside eq. proofs!

cast(𝐴×𝐵){(𝐴′×𝐵′)
𝑝 𝑡 −→ ⟨cast𝐴{𝐴′

𝑝.1 (𝜋1𝑡), cast𝐵{𝐵′
𝑝.2 (𝜋2𝑡)⟩

Thus, OTT accommodates desirable equality axioms (funext, propext, Q types)
without blocking computation.

3

This work

We report on a WIP metatheoretic justification of (non-indexed) QITs in OTT,
with dependent eliminators that compute definitionally.

The plan

Study metatheory of OTT + QIT scheme.

Construct QITs from inductive types and Q (quotient types).
Extend OTT with Fiore et al’s QW Types.
Show that all QITs can be constructed from QW types in OTT.

Justification for extending Observational Rocq with a primitive scheme for QITs.

4

This work

We report on a WIP metatheoretic justification of (non-indexed) QITs in OTT,
with dependent eliminators that compute definitionally.

The plan

? Study metatheory of OTT + QIT scheme.

Construct QITs from inductive types and Q (quotient types).
Extend OTT with Fiore et al’s QW Types.
Show that all QITs can be constructed from QW types in OTT.

Justification for extending Observational Rocq with a primitive scheme for QITs.

4

This work

We report on a WIP metatheoretic justification of (non-indexed) QITs in OTT,
with dependent eliminators that compute definitionally.

The plan

✗ Study metatheory of OTT + QIT scheme.

Construct QITs from inductive types and Q (quotient types).
Extend OTT with Fiore et al’s QW Types.
Show that all QITs can be constructed from QW types in OTT.

Justification for extending Observational Rocq with a primitive scheme for QITs.

4

This work

We report on a WIP metatheoretic justification of (non-indexed) QITs in OTT,
with dependent eliminators that compute definitionally.

The plan

✗ Study metatheory of OTT + QIT scheme.
? Construct QITs from inductive types and Q (quotient types).

Extend OTT with Fiore et al’s QW Types.
Show that all QITs can be constructed from QW types in OTT.

Justification for extending Observational Rocq with a primitive scheme for QITs.

4

This work

We report on a WIP metatheoretic justification of (non-indexed) QITs in OTT,
with dependent eliminators that compute definitionally.

The plan

✗ Study metatheory of OTT + QIT scheme.
✗ Construct QITs from inductive types and Q (quotient types).

Extend OTT with Fiore et al’s QW Types.
Show that all QITs can be constructed from QW types in OTT.

Justification for extending Observational Rocq with a primitive scheme for QITs.

4

This work

We report on a WIP metatheoretic justification of (non-indexed) QITs in OTT,
with dependent eliminators that compute definitionally.

The plan

✗ Study metatheory of OTT + QIT scheme.
✗ Construct QITs from inductive types and Q (quotient types).
? Extend OTT with Fiore et al’s QW Types.
Show that all QITs can be constructed from QW types in OTT.1

Justification for extending Observational Rocq with a primitive scheme for QITs.

1Construction was claimed by Fiore et al. in ETT, but only argued informally. 4

This work

We report on a WIP metatheoretic justification of (non-indexed) QITs in OTT,
with dependent eliminators that compute definitionally.

The plan

✗ Study metatheory of OTT + QIT scheme.
✗ Construct QITs from inductive types and Q (quotient types).
✓ Extend OTT with Fiore et al’s QW Types.

Show that all QITs can be constructed from QW types in OTT.1

Justification for extending Observational Rocq with a primitive scheme for QITs.

1Construction was claimed by Fiore et al. in ETT, but only argued informally. 4

This work

We report on a WIP metatheoretic justification of (non-indexed) QITs in OTT,
with dependent eliminators that compute definitionally.

The plan

✗ Study metatheory of OTT + QIT scheme.
✗ Construct QITs from inductive types and Q (quotient types).
✓ Extend OTT with Fiore et al’s QW Types.

Show that all QITs can be constructed from QW types in OTT.1

Justification for extending Observational Rocq with a primitive scheme for QITs.

1Construction was claimed by Fiore et al. in ETT, but only argued informally. 4

Constructing QITs from QW in OTT

QIT scheme −−−−−−−−−−−−−−−−−−−−−−−−→ QW

5

Constructing QITs from QW in OTT

QIT scheme −−−−−−−−−−−−−−−−−−−−−−−−→ QW ?

5

Fiore et al.’s QW Types
Sig = record {Op : Type; Ar : Op → Type}

Inductive QW (Σ : Sig) (Γ : Type) : Type :=
| var (𝑥 : Γ) : QW Σ Γ

| op (𝑐 : Σ.Op) (𝑓 : Σ.Ar 𝑐 → QW Σ Γ) : QW Σ Γ

EqTh Σ = record {E : Type; Ctx : E → Type; lhs, rhs : (𝑒 : E) → QW Σ (Ctx 𝑒)}

Inductive QW (Σ : Sig) (E : EqTh Σ) : Type :=
| op (𝑐 : Σ.Op) (𝑓 : Σ.Ar 𝑐 → QW Σ E) : QW Σ E
| eq (𝑒 : E .E) (𝛾 : E .Ctx 𝑒 → QW Σ E) : (E .lhs 𝑒)⟨𝛾⟩ = (E .rhs 𝑒)⟨𝛾⟩

where "substitution" func. _⟨_⟩ : QW Σ Γ → (Γ → QW Σ E) → QW Σ E defined by
(var 𝑥)⟨𝛾⟩ := 𝛾 𝑥 (op 𝑐 𝑓)⟨𝛾⟩ := op 𝑐 (𝜆𝑥 .(𝑓 𝑥)⟨𝛾⟩)

6

Fiore et al.’s QW Types
Sig = record {Op : Type; Ar : Op → Type}

Inductive QW (Σ : Sig) (Γ : Type) : Type :=
| var (𝑥 : Γ) : QW Σ Γ

| op (𝑐 : Σ.Op) (𝑓 : Σ.Ar 𝑐 → QW Σ Γ) : QW Σ Γ

EqTh Σ = record {E : Type; Ctx : E → Type; lhs, rhs : (𝑒 : E) → QW Σ (Ctx 𝑒)}

Inductive QW (Σ : Sig) (E : EqTh Σ) : Type :=
| op (𝑐 : Σ.Op) (𝑓 : Σ.Ar 𝑐 → QW Σ E) : QW Σ E
| eq (𝑒 : E .E) (𝛾 : E .Ctx 𝑒 → QW Σ E) : (E .lhs 𝑒)⟨𝛾⟩ = (E .rhs 𝑒)⟨𝛾⟩

where "substitution" func. _⟨_⟩ : QW Σ Γ → (Γ → QW Σ E) → QW Σ E defined by
(var 𝑥)⟨𝛾⟩ := 𝛾 𝑥 (op 𝑐 𝑓)⟨𝛾⟩ := op 𝑐 (𝜆𝑥 .(𝑓 𝑥)⟨𝛾⟩)

6

Fiore et al.’s QW Types
Sig = record {Op : Type; Ar : Op → Type}

Inductive QW (Σ : Sig) (Γ : Type) : Type :=
| var (𝑥 : Γ) : QW Σ Γ

| op (𝑐 : Σ.Op) (𝑓 : Σ.Ar 𝑐 → QW Σ Γ) : QW Σ Γ

EqTh Σ = record {E : Type; Ctx : E → Type; lhs, rhs : (𝑒 : E) → QW Σ (Ctx 𝑒)}

Inductive QW (Σ : Sig) (E : EqTh Σ) : Type :=
| op (𝑐 : Σ.Op) (𝑓 : Σ.Ar 𝑐 → QW Σ E) : QW Σ E
| eq (𝑒 : E .E) (𝛾 : E .Ctx 𝑒 → QW Σ E) : (E .lhs 𝑒)⟨𝛾⟩ = (E .rhs 𝑒)⟨𝛾⟩

where "substitution" func. _⟨_⟩ : QW Σ Γ → (Γ → QW Σ E) → QW Σ E defined by
(var 𝑥)⟨𝛾⟩ := 𝛾 𝑥 (op 𝑐 𝑓)⟨𝛾⟩ := op 𝑐 (𝜆𝑥 .(𝑓 𝑥)⟨𝛾⟩)

6

Fiore et al.’s QW Types
Sig = record {Op : Type; Ar : Op → Type}

Inductive QW (Σ : Sig) (Γ : Type) : Type :=
| var (𝑥 : Γ) : QW Σ Γ

| op (𝑐 : Σ.Op) (𝑓 : Σ.Ar 𝑐 → QW Σ Γ) : QW Σ Γ

EqTh Σ = record {E : Type; Ctx : E → Type; lhs, rhs : (𝑒 : E) → QW Σ (Ctx 𝑒)}

Inductive QW (Σ : Sig) (E : EqTh Σ) : Type :=
| op (𝑐 : Σ.Op) (𝑓 : Σ.Ar 𝑐 → QW Σ E) : QW Σ E
| eq (𝑒 : E .E) (𝛾 : E .Ctx 𝑒 → QW Σ E) : (E .lhs 𝑒)⟨𝛾⟩ = (E .rhs 𝑒)⟨𝛾⟩

where "substitution" func. _⟨_⟩ : QW Σ Γ → (Γ → QW Σ E) → QW Σ E defined by
(var 𝑥)⟨𝛾⟩ := 𝛾 𝑥 (op 𝑐 𝑓)⟨𝛾⟩ := op 𝑐 (𝜆𝑥 .(𝑓 𝑥)⟨𝛾⟩)

6

Constructing QITs from QW in OTT

QIT scheme−−−−−−−−−−−−−−−−−−−−−−−−→QW

7

Constructing QITs from QW in OTT

QIT scheme−−−−−−−−−−−−−−−−−−−−−−−−→QW

7

Constructing QITs from QW in OTT

QIT scheme−−−−−−−−−→
B

Tm−−−−−−−−−→
A

QW

7

Fiore et al.’s QW Types
Sig = record {Op : Type; Ar : Op → Type}

Inductive QW (Σ : Sig) (Γ : Type) : Type :=
| var (𝑥 : Γ) : QW Σ Γ

| op (𝑐 : Σ.Op) (𝑓 : Σ.Ar 𝑐 → QW Σ Γ) : QW Σ Γ

EqTh Σ = record {E : Type; Ctx : E → Type; lhs, rhs : (𝑒 : E) → QW Σ (Ctx 𝑒)}

Inductive QW (Σ : Sig) (E : EqTh Σ) : Type :=
| op (𝑐 : Σ.Op) (𝑓 : Σ.Ar 𝑐 → QW Σ E) : QW Σ E
| eq (𝑒 : E .E) (𝛾 : E .Ctx 𝑒 → QW Σ E) : (E .lhs 𝑒)⟨𝛾⟩ = (E .rhs 𝑒)⟨𝛾⟩

where "substitution" func. _⟨_⟩ : QW Σ Γ → (Γ → QW Σ E) → QW Σ E defined by
(var 𝑥)⟨𝛾⟩ := 𝛾 𝑥 (op 𝑐 𝑓)⟨𝛾⟩ := op 𝑐 (𝜆𝑥 .(𝑓 𝑥)⟨𝛾⟩)

8

Our finitary universal QIT (see infinitary one in the github repo)
Sig = record {Op : Type; Ar : Op → Nat}

Inductive Tm (Σ : Sig) (Γ : Type) : Type :=
| var (𝑥 : Γ) : Tm Σ Γ

| op (𝑐 : Σ.Op) (t : Vec (Tm Σ Γ) (Σ.Ar 𝑐)) : Tm Σ Γ

EqTh Σ = record {E : Type; Ctx : E → Type; lhs, rhs : (𝑒 : E) → Tm Σ (Ctx 𝑒)}

Inductive Tm (Σ : Sig) (E : EqTh Σ) : Type :=
| op (𝑐 : Σ.Op) (t : Vec (Tm Σ E) (Σ.Ar 𝑐)) : Tm Σ E
| eq (𝑒 : E .E) (𝛾 : E .Ctx 𝑒 → Tm Σ E) : (E .lhs 𝑒)⟨𝛾⟩ = (E .rhs 𝑒)⟨𝛾⟩

where "substitution" func. _⟨_⟩ : Tm Σ Γ → (Γ → Tm Σ E) → Tm Σ E defined by
(var 𝑥)⟨𝛾⟩ := 𝛾 𝑥 (op 𝑐 [𝑡1, . . . , 𝑡𝑘])⟨𝛾⟩ := op 𝑐 [𝑡1⟨𝛾⟩, . . . , 𝑡𝑘 ⟨𝛾⟩]

9

Constructing QITs from QW in OTT

QIT scheme−−−−−−−−−→
B

Tm−−−−−−−−−→
A

QW

Construction A () In OTT (with cast𝐴{𝐴
𝑝 𝑡 ≡ 𝑡) we can construct Tm from QW.

Proof (tedious) Involves switching between first- and higher-order representa-
tion of branching.

Construction B (WIP)Non-indexed infinitary QITs can be constructed from Tm.

Proof Not yet written, but examples suggest it is direct (see github in abstract).

10

Constructing QITs from QW in OTT

QIT scheme−−−−−−−−−→
B

Tm−−−−−−−−−→
A

QW

Construction A () In OTT (with cast𝐴{𝐴
𝑝 𝑡 ≡ 𝑡) we can construct Tm from QW.

Proof (tedious) Involves switching between first- and higher-order representa-
tion of branching.

Construction B (WIP)Non-indexed infinitary QITs can be constructed from Tm.

Proof Not yet written, but examples suggest it is direct (see github in abstract).

10

Constructing QITs from QW in OTT

QIT scheme−−−−−−−−−→
B

Tm−−−−−−−−−→
A

QW

Construction A () In OTT (with cast𝐴{𝐴
𝑝 𝑡 ≡ 𝑡) we can construct Tm from QW.

Proof (tedious) Involves switching between first- and higher-order representa-
tion of branching.

Construction B (WIP)Non-indexed infinitary QITs can be constructed from Tm.

Proof Not yet written, but examples suggest it is direct (see github in abstract).

10

Constructing QITs from QW in OTT

QIT scheme−−−−−−−−−→
B

Tm−−−−−−−−−→
A

QW

Construction A () In OTT (with cast𝐴{𝐴
𝑝 𝑡 ≡ 𝑡) we can construct Tm from QW.

Proof (tedious) Involves switching between first- and higher-order representa-
tion of branching.

Construction B (WIP)Non-indexed infinitary QITs can be constructed from Tm.

Proof Not yet written, but examples suggest it is direct (see github in abstract).

10

Constructing QITs from QW in OTT

QIT scheme−−−−−−−−−→
B

Tm−−−−−−−−−→
A

QW

Construction A () In OTT (with cast𝐴{𝐴
𝑝 𝑡 ≡ 𝑡) we can construct Tm from QW.

Proof (tedious) Involves switching between first- and higher-order representa-
tion of branching.

Construction B (WIP)Non-indexed infinitary QITs can be constructed from Tm.

Proof Not yet written, but examples suggest it is direct (see github in abstract).

10

Example: MSet

11

Conclusion
Aconstruction of infinitary non-indexedQITswith definitional 𝛽-rules inOTT+QW.

Next steps Establish the metatheory of OTT+QW:

1. Normalization and decidability of conversion:
Logical relations, or by simulation with OTT+W?

2. Consistency: Adapting set-theoretic model of Pujet and Tabareau.

A restricted form of canonicity for the constructed QITs should follow.

Future work

• Add primitive scheme of QITs to observational version of Rocq.
• Explore more complex classes of types (indexed QITs and QIITs).

Thank you for your attention!

12

Conclusion
Aconstruction of infinitary non-indexedQITswith definitional 𝛽-rules inOTT+QW.

Next steps Establish the metatheory of OTT+QW:

1. Normalization and decidability of conversion:
Logical relations, or by simulation with OTT+W?

2. Consistency: Adapting set-theoretic model of Pujet and Tabareau.

A restricted form of canonicity for the constructed QITs should follow.

Future work

• Add primitive scheme of QITs to observational version of Rocq.
• Explore more complex classes of types (indexed QITs and QIITs).

Thank you for your attention!

12

Conclusion
Aconstruction of infinitary non-indexedQITswith definitional 𝛽-rules inOTT+QW.

Next steps Establish the metatheory of OTT+QW:

1. Normalization and decidability of conversion:
Logical relations, or by simulation with OTT+W?

2. Consistency: Adapting set-theoretic model of Pujet and Tabareau.

A restricted form of canonicity for the constructed QITs should follow.

Future work

• Add primitive scheme of QITs to observational version of Rocq.
• Explore more complex classes of types (indexed QITs and QIITs).

Thank you for your attention!

12

Conclusion
Aconstruction of infinitary non-indexedQITswith definitional 𝛽-rules inOTT+QW.

Next steps Establish the metatheory of OTT+QW:

1. Normalization and decidability of conversion:
Logical relations, or by simulation with OTT+W?

2. Consistency: Adapting set-theoretic model of Pujet and Tabareau.

A restricted form of canonicity for the constructed QITs should follow.

Future work

• Add primitive scheme of QITs to observational version of Rocq.
• Explore more complex classes of types (indexed QITs and QIITs).

Thank you for your attention!

12

Conclusion
Aconstruction of infinitary non-indexedQITswith definitional 𝛽-rules inOTT+QW.

Next steps Establish the metatheory of OTT+QW:

1. Normalization and decidability of conversion:
Logical relations, or by simulation with OTT+W?

2. Consistency: Adapting set-theoretic model of Pujet and Tabareau.

A restricted form of canonicity for the constructed QITs should follow.

Future work

• Add primitive scheme of QITs to observational version of Rocq.
• Explore more complex classes of types (indexed QITs and QIITs).

Thank you for your attention!

12

Conclusion
Aconstruction of infinitary non-indexedQITswith definitional 𝛽-rules inOTT+QW.

Next steps Establish the metatheory of OTT+QW:

1. Normalization and decidability of conversion:
Logical relations, or by simulation with OTT+W?

2. Consistency: Adapting set-theoretic model of Pujet and Tabareau.

A restricted form of canonicity for the constructed QITs should follow.

Future work

• Add primitive scheme of QITs to observational version of Rocq.
• Explore more complex classes of types (indexed QITs and QIITs).

Thank you for your attention!

12

Conclusion
Aconstruction of infinitary non-indexedQITswith definitional 𝛽-rules inOTT+QW.

Next steps Establish the metatheory of OTT+QW:

1. Normalization and decidability of conversion:
Logical relations, or by simulation with OTT+W?

2. Consistency: Adapting set-theoretic model of Pujet and Tabareau.

A restricted form of canonicity for the constructed QITs should follow.

Future work

• Add primitive scheme of QITs to observational version of Rocq.

• Explore more complex classes of types (indexed QITs and QIITs).

Thank you for your attention!

12

Conclusion
Aconstruction of infinitary non-indexedQITswith definitional 𝛽-rules inOTT+QW.

Next steps Establish the metatheory of OTT+QW:

1. Normalization and decidability of conversion:
Logical relations, or by simulation with OTT+W?

2. Consistency: Adapting set-theoretic model of Pujet and Tabareau.

A restricted form of canonicity for the constructed QITs should follow.

Future work

• Add primitive scheme of QITs to observational version of Rocq.
• Explore more complex classes of types (indexed QITs and QIITs).

Thank you for your attention!

12

Conclusion
Aconstruction of infinitary non-indexedQITswith definitional 𝛽-rules inOTT+QW.

Next steps Establish the metatheory of OTT+QW:

1. Normalization and decidability of conversion:
Logical relations, or by simulation with OTT+W?

2. Consistency: Adapting set-theoretic model of Pujet and Tabareau.

A restricted form of canonicity for the constructed QITs should follow.

Future work

• Add primitive scheme of QITs to observational version of Rocq.
• Explore more complex classes of types (indexed QITs and QIITs).

Thank you for your attention!
12

