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1. Context

In a 2024 preprint, Anel and Barton [1] introduce a family of of
variants of the axiom of choice for higher toposes

They investigate the relationship between these axioms and other
properties of higher toposes like hypercompleteness and Postnikov
completeness.

They observed some of that material is suitable to be translated
into HoTT.

This is done and there’s now a formalization in Cubical Agda.

Amongst the results is a proof in HoTT that any of these forms of
the axioms of countable choice imply the existence of an
∞-truncation modality.
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Connectivity is a basic concept in HoTT.

The n-connected types are defined inductively:

A type X is called (−1)-connected if it is merely inhabited.

X is called (n + 1)-connected if it is merely inhabited and for all
x , y : X , the type x =X y is n-connected.

A map is called n-connected if all its fibers are n-connected types.
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2.2. Truncation

A type X is called n-truncated if it is right-orthogonal to all
n-connected maps:

C X

D

n−connected
!

For each n, there is a modality which sends every type X to an
n-truncated image of that type: ‖X‖n.

This is called n-truncation. It satisfies a universal property.
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These conditions are really very natural.

If x : X , we can define πk(X , x) := ‖Sk →pt X‖0.

If f : X →pt Y , then we have a function

πk(f ) : πk(X , x)→ πk(Y , y)

A map f : X → Y is n-connected, iff for all x : X and all k ≤ n:

πk(f ) : πk(X , x)→ πk(Y , f (x))

is an isomorphism.

Similarly for ∞-connected maps, now for all k .
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2.4. Intuition

A map between n-truncated types is an equivalence iff it’s
n-connected.

A map between ∞-truncated types is an equivalence iff it’s
∞-connected.

So truncatedness gives us a way to express how close we can get to
understanding a type just by studying its homotopy groups.

However, we cannot prove that all types are ∞-truncated. This is
(famously) independent of HoTT.
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2.5. ∞-truncation

We would like to have a modality which sends each type to an
∞-truncated image of that type. Just like the n-truncation
modalities.

If we can construct such a thing, we will call it ∞-truncation.

Sadly, we do not know how to construct such a thing in HoTT
without making further assumptions.
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3. Axioms implying ∞-truncation

Now we’re going to discuss some axioms.

These axioms are all known to be independent of HoTT, we’ll
make some comments on their relationships to each other.

Each one of the axioms we’ll discuss implies that an ∞-truncation
modality can be constructed.
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3.1. Hypercompleteness

Hypercompleteness says that all types are ∞-truncated.

Then ∞-truncation is given by the trivial modality:

λX .X

We already mentioned that this is independent of HoTT. A
counter-model is given by the topos of parametrized spectra.
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3.2. Postnikov towers

A Postnikov tower is a sequence of types An with maps between
them, like so:

. . . An . . . A1 A0

Such that for all k, the kth type in the sequence is k-truncated
and the kth map is k-connected.
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3.2. Postnikov towers

If X is a type, we can use the n-truncation modalities from earlier
to construct a Postnikov tower:

. . . ‖X‖n . . . ‖X‖1 ‖X‖0

Meanwhile, given a Postnikov tower

. . . An . . . A1 A0

We can take its limit:
lim A
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There’s a map from a type X to the limit of its Postnikov tower:
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lim ‖X‖ . . . ‖X‖n+1 ‖X‖n . . .

η
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3.3. Postnikov convergence

There’s a map from a type X to the limit of its Postnikov tower:

X

lim ‖X‖ . . . ‖X‖n+1 ‖X‖n . . .

η

Postnikov convergence says that this vertical map is always an
equivalence.
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3.3. Postnikov convergence

Limits of Postnikov towers are always ∞-truncated.

So, Postnikov convergence implies hypercompleteness, which
implies that the trivial modality is ∞-truncation.

There are examples of higher toposes which are hypercomplete but
not Postnikov convergent.
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3.4. Postnikov effectiveness

Given a Postnikov tower with types A0,A1, . . . ,An, . . . , we can
construct a ladder of maps using the universal property of the
n-truncation:

...
...

‖ lim A‖n+1 An+1

‖ lim A‖n An

...
...

εn+1

εn
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Given a Postnikov tower with types A0,A1, . . . ,An, . . . , we can
construct a ladder of maps using the universal property of the
n-truncation:

...
...

‖ lim A‖n+1 An+1

‖ lim A‖n An

...
...

εn+1

εn

Postnikov effectiveness says that all these horizontal maps are
always equivalences.
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3.4. Postnikov effectiveness

Postnikov effectiveness also implies the existence of an
∞-truncation modality.

The function underlying the modality is:

λX . lim ‖X‖

There are higher toposes which satisfy Postnikov effectiveness, but
not hypercompleteness, so this modality is not always trivial.
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3.4. Postnikov effectiveness
The function underlying the modality is:

λX . lim ‖X‖

We already said that limits of Postnikov towers are ∞-truncated,
so everything in the image of the modality is ∞-truncated.

To show the converse we need a lemma: if Postnikov effectivness
holds, then, for the Postnikov tower of a fixed type, the inverses to
the maps εn in the ladder are the maps ‖η‖n.

Now we appeal to the following diagram:

X lim ‖X‖

‖X‖n ‖ lim ‖X‖‖n∼

17 / 27



3.5. Countable choice

18 / 27



3.5. Countable choice
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choice:
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product
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Xn is inhabited.
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3.5. Countable choice

A more familiar axiom than any of these is the axiom of countable
choice:

If X0, . . . ,Xn, . . . is a family of inhabited objects, then their
product

∏
Xn is inhabited.

Anel and Barton [1] generalize this to axioms of countable choice
of dimension ≤ d :

If X0, . . . ,Xn, . . . are (d + k)-connected objects, then their product
is k-connected.

We recover the original case when d = 0 and k = −1.
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3. Axioms implying ∞-truncation

Anel and Barton prove that any one of these forms of countable
choice (externally) implies Postnikov effectiveness. They observed
that their proof is suitable to be translated into HoTT and
formalized.
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3. Axioms implying ∞-truncation
Anel and Barton prove that any one of these forms of countable
choice (externally) implies Postnikov effectiveness. They observed
that their proof is suitable to be translated into HoTT and
formalized.

This has now been carried out, Cubical Agda code is available:
https://github.com/owen-milner/choicepostnikov

As well as a proof that countable choice implies Postnikov
effectiveness, the repository also contains:

• A proof that limits of Postnikov towers are always
∞-truncated

• A proof that Postnikov effectiveness implies that η from above
is ∞-connected

• A proof that Postnikov effectiveness implies that the
Postnikov operator is a modality
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For example: the equivalence between uniquely eliminating
modalities – which are used for the proof – and the modalities
already defined in the Cubical library [3].
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4. Final remarks

There are still a few things to add to the formalization.

For example: the equivalence between uniquely eliminating
modalities – which are used for the proof – and the modalities
already defined in the Cubical library [3].

The relationship between ∞-truncation and Postnikov towers is
subtle in general.

For instance: Morel and Voevodsky [2] present an example of a
topos which is hypercomplete, but not Postnikov convergent.
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4. Final remarks

Thank you for listening.

21 / 27



[1] M. Anel and R. Barton. “Choice axioms and Postnikov
completeness”. 2024. url:
https://arxiv.org/abs/2403.19772.

[2] F. Morel and V. Voevodsky. “A1-homotopy theory of
schemes”. In: Publications mathèmatiques de l’I.H.É.S 90
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Appendix 1. Limits of Postnikov towers
are ∞-truncated

Suppose we have a Postnikov tower with types A0,A1, . . . ,An, . . . ,
and an ∞-connected map C → D.

The type of fillers for the diagram:

C lim A

D

is the limit of a diagram whose objects are the types of fillers for
diagrams like so:

C An

D

And the latter are all contractible because C → D is n-connected
for all n.

The limit of a diagram of contractible objects is contractible.
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Appendix 2. Identifying ε−1
n

If Postnikov effectiveness holds, then ε−1n = ‖η‖n.

We could write tXn : X → ‖X‖n and

t
lim ‖X‖
n : lim ‖X‖ → ‖ lim ‖X‖‖n for the universal maps. But below

we’ll supress the sub/superscripts

Then from the definitions of η and ε we have some commutative
diagrams:

X lim ‖X‖

‖X‖

η

t
p

lim ‖X‖

‖X‖ ‖ lim ‖X‖‖
p

t

ε
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Appendix 2. Identifying ε−1
n

X lim ‖X‖

‖X‖

η

t
p

lim ‖X‖

‖X‖ ‖ lim ‖X‖‖
p

t

ε

From the second diagram we can deduce that the following
diagram commutes

lim ‖X‖

‖X‖ ‖ lim ‖X‖‖
p

t

ε−1
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Appendix 2. Identifying ε−1
n

We have:

X lim ‖X‖

‖X‖

η

t
p

lim ‖X‖

‖X‖ ‖ lim ‖X‖‖
p

t

ε−1

We can paste these together to arrive at

X lim ‖X‖

‖X‖ ‖ lim ‖X‖‖

η

t t

ε−1

Which shows ε−1 = ‖η‖ by the universal property of the
truncation.
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Appendix 3. Effectiveness implies the
Postnikov operator is a modality

We must check that the following map is always an equivalence:

λf .f ◦ η :

 ∏
x :lim ‖X‖

lim ‖P(x)‖

→ (∏
x :X

lim ‖P(η(x))‖

)
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Appendix 3. Effectiveness implies the
Postnikov operator is a modality

We must check that the following map is always an equivalence:

λf .f ◦ η :

 ∏
x :lim ‖X‖

lim ‖P(x)‖

→ (∏
x :X

lim ‖P(η(x))‖

)

But, remembering that products commute with limits, and
applying the elimination rule for n-truncation, it suffices to check
that the following map is always an equivalence for all n:

λf .f ◦ ε−1n+1 :

 ∏
x :‖ lim ‖X‖‖n+1

Q(x)

→
 ∏

x :‖X‖n+1

Q(ε−1n+1(x))


Which is true because ε−1n+1 is an equivalence.
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