
Reasoning with strict symmetric monoidal categories in Agda

Malin Altenmüller

Women in EPN, 10th June 2025

Monoidal Categories

Describe structures that can be composed in sequence and in parallel.

Definition
A category C is monoidal if it is equipped with a functor ⊗ : C × C, and morphisms:

• left unit λA : 1 ⊗ A → A

• right unit ρA : A ⊗ 1 → A

• associativity αA,B,C : (A ⊗ B)⊗ C → A ⊗ (B ⊗ C)

satisfying the triangle and pentagon equalities.

1 / 24

Symmetric Monoidal Categories (SMCs)

Definition
A monoidal category is symmetric if it is equipped with a swap operation σA,B : A ⊗ B → B ⊗ A, such that
σA,B # σB,A = 1A⊗B and the hexagon equality holds.

Double swap:

Hexagon equality:

(A ⊗ B)⊗ C A ⊗ B ⊗ C (B ⊗ C)⊗ A

(B ⊗ A)⊗ C B ⊗ A ⊗ C B ⊗ C ⊗ A

αA,B,C

σA,B⊗1C

σA,B⊗C

αB,C,A

αB,A,C 1B⊗σA,C

2 / 24

Symmetric Monoidal Categories (SMCs)

Definition
A monoidal category is symmetric if it is equipped with a swap operation σA,B : A ⊗ B → B ⊗ A, such that
σA,B # σB,A = 1A⊗B and the hexagon equality holds.

Double swap:

Hexagon equality:

(A ⊗ B)⊗ C A ⊗ B ⊗ C (B ⊗ C)⊗ A

(B ⊗ A)⊗ C B ⊗ A ⊗ C B ⊗ C ⊗ A

αA,B,C

σA,B⊗1C

σA,B⊗C

αB,C,A

αB,A,C 1B⊗σA,C

2 / 24

Symmetric Monoidal Categories (SMCs)

Definition
A monoidal category is symmetric if it is equipped with a swap operation σA,B : A ⊗ B → B ⊗ A, such that
σA,B # σB,A = 1A⊗B and the hexagon equality holds.

Double swap:

Hexagon equality:

(A ⊗ B)⊗ C A ⊗ B ⊗ C (B ⊗ C)⊗ A

(B ⊗ A)⊗ C B ⊗ A ⊗ C B ⊗ C ⊗ A

αA,B,C

σA,B⊗1C

σA,B⊗C

αB,C,A

αB,A,C 1B⊗σA,C

2 / 24

SMCs in Agda

A category in which all morphisms are invertible:

data Ob : Set where
one : Ob
⊗ : Ob → Ob → Ob

var : N → Ob

data ↔ : Ob → Ob → Set where
id : (A : Ob) → A ↔ A
: A ↔ B → B ↔ C → A ↔ C
⊗ : A ↔ B → C ↔ D → (A ⊗ C) ↔ (B ⊗ D)

sym : A ↔ B → B ↔ A
swap⊗ : (A B : Ob) → A ⊗ B ↔ B ⊗ A

3 / 24

SMCs in Agda

A category in which all morphisms are invertible:

data Ob : Set where
one : Ob
⊗ : Ob → Ob → Ob

var : N → Ob

data ↔ : Ob → Ob → Set where
id : (A : Ob) → A ↔ A
: A ↔ B → B ↔ C → A ↔ C
⊗ : A ↔ B → C ↔ D → (A ⊗ C) ↔ (B ⊗ D)

sym : A ↔ B → B ↔ A
swap⊗ : (A B : Ob) → A ⊗ B ↔ B ⊗ A

3 / 24

Reasoning with morphisms

The 2-level structure defines equations between morphisms.

data ⇔ : (A ↔ B) → (A ↔ B) → Set where
id : {c : A ↔ B} → c ⇔ c
sym : {c d : A ↔ B} → c ⇔ d → d ⇔ c
: {c d e : A ↔ B} → c ⇔ d → d ⇔ e → c ⇔ e

(+ constructors for # and ⊗ of terms)

For example, we can specify that ⊗ is a functor:

id⊗id : (id A ⊗ id B) ⇔ id (A ⊗ B)

hom⊗ : {f : A ↔ C}{g : C ↔ E}{h : B ↔ D}{k : D ↔ F}
→ (f # g) ⊗ (h # k) ⇔ (f ⊗ h) # (g ⊗ k)

4 / 24

Reasoning with morphisms

The 2-level structure defines equations between morphisms.

data ⇔ : (A ↔ B) → (A ↔ B) → Set where
id : {c : A ↔ B} → c ⇔ c
sym : {c d : A ↔ B} → c ⇔ d → d ⇔ c
: {c d e : A ↔ B} → c ⇔ d → d ⇔ e → c ⇔ e

(+ constructors for # and ⊗ of terms)

For example, we can specify that ⊗ is a functor:

id⊗id : (id A ⊗ id B) ⇔ id (A ⊗ B)

hom⊗ : {f : A ↔ C}{g : C ↔ E}{h : B ↔ D}{k : D ↔ F}
→ (f # g) ⊗ (h # k) ⇔ (f ⊗ h) # (g ⊗ k)

4 / 24

Reasoning with morphisms

The 2-level structure defines equations between morphisms.

data ⇔ : (A ↔ B) → (A ↔ B) → Set where
id : {c : A ↔ B} → c ⇔ c
sym : {c d : A ↔ B} → c ⇔ d → d ⇔ c
: {c d e : A ↔ B} → c ⇔ d → d ⇔ e → c ⇔ e

(+ constructors for # and ⊗ of terms)

For example, we can specify that ⊗ is a functor:

id⊗id : (id A ⊗ id B) ⇔ id (A ⊗ B)

hom⊗ : {f : A ↔ C}{g : C ↔ E}{h : B ↔ D}{k : D ↔ F}
→ (f # g) ⊗ (h # k) ⇔ (f ⊗ h) # (g ⊗ k)

4 / 24

Triangle equality

(A ⊗ 1)⊗ B A ⊗ (1 ⊗ B)

A ⊗ B

αA,1,B

ρA⊗1B 1A⊗λB

triangle : unit⊗r A ⊗ id B ⇔ assoc⊗ {A}{one}{B} # (id A ⊗ unit⊗l B)

5 / 24

Pentagon equality

((A ⊗ B)⊗ C)⊗ D (A ⊗ B)⊗ C ⊗ D A ⊗ B ⊗ C ⊗ D

(A ⊗ B ⊗ C)⊗ D A ⊗ (B ⊗ C)⊗ D

αA⊗B,C,D

αA,B,C⊗1D

αA,B,C⊗D

αA,B⊗C,D

1A⊗αB,C,D

pentagon : assoc⊗ {A ⊗ B} {C} {D} # assoc⊗ {A} {B} {C ⊗ D}
⇔ assoc⊗ {A} {B} {C} ⊗ id D # assoc⊗ {A} {B ⊗ C} {D} # id A ⊗ assoc⊗ {B} {C} {D}

6 / 24

Coherence isomorphisms on morphisms

To express associativity and unit laws on morphisms, we have to include explicit equations on objects to fix up
the types:

assoc⊗m’ : {f : A ↔ B}{g : B ↔ C}{h : C ↔ D} → (f ⊗ g) ⊗ h ⇔ assoc⊗ # f ⊗ g ⊗ h # sym assoc⊗

unit⊗ml’ : {f : A ↔ B} → id one ⊗ f ⇔ unit⊗l A # f # sym (unit⊗l B)

unit⊗mr’ : {f : A ↔ B} → f ⊗ id one ⇔ unit⊗r A # f # sym (unit⊗r B)

For reasoning with weak MCs, all of the structural equivalences have to be explicit.

7 / 24

Coherence isomorphisms on morphisms

To express associativity and unit laws on morphisms, we have to include explicit equations on objects to fix up
the types:

assoc⊗m’ : {f : A ↔ B}{g : B ↔ C}{h : C ↔ D} → (f ⊗ g) ⊗ h ⇔ assoc⊗ # f ⊗ g ⊗ h # sym assoc⊗

unit⊗ml’ : {f : A ↔ B} → id one ⊗ f ⇔ unit⊗l A # f # sym (unit⊗l B)

unit⊗mr’ : {f : A ↔ B} → f ⊗ id one ⇔ unit⊗r A # f # sym (unit⊗r B)

For reasoning with weak MCs, all of the structural equivalences have to be explicit.

7 / 24

Coherence isomorphisms on morphisms

To express associativity and unit laws on morphisms, we have to include explicit equations on objects to fix up
the types:

assoc⊗m’ : {f : A ↔ B}{g : B ↔ C}{h : C ↔ D} → (f ⊗ g) ⊗ h ⇔ assoc⊗ # f ⊗ g ⊗ h # sym assoc⊗

unit⊗ml’ : {f : A ↔ B} → id one ⊗ f ⇔ unit⊗l A # f # sym (unit⊗l B)

unit⊗mr’ : {f : A ↔ B} → f ⊗ id one ⇔ unit⊗r A # f # sym (unit⊗r B)

For reasoning with weak MCs, all of the structural equivalences have to be explicit.

7 / 24

Strict SMCs

Definition
In a strict SMC, associativity and unit morphisms are the identity.

Lemma
In a strict SMC, triangle and pentagon equalities are the identity.

Remark: both paths are the identity, but also the filling of the commutative diagrams.

8 / 24

Strict SMCs

Definition
In a strict SMC, associativity and unit morphisms are the identity.

Lemma
In a strict SMC, triangle and pentagon equalities are the identity.

Remark: both paths are the identity, but also the filling of the commutative diagrams.

8 / 24

String Diagrams

In string diagrams the strictness property is trivially satisfied. For example, (f ⊗ g)⊗ h = f ⊗ g ⊗ h:

String diagrams depict equivalence classes of morphisms of monoidal categories.

9 / 24

String Diagrams

In string diagrams the strictness property is trivially satisfied. For example, (f ⊗ g)⊗ h = f ⊗ g ⊗ h:

String diagrams depict equivalence classes of morphisms of monoidal categories.

9 / 24

Reasoning with strict SMCs in Agda

• only computational content is in the swap operations (morphisms are permutations)

• ideally we would only talk about swaps in proofs

• implicit structural equalities have to be explicit in Agda

assoc⊗m’ : {f : A ↔ B}{g : B ↔ C}{h : C ↔ D} → (f ⊗ g) ⊗ h ⇔ assoc⊗ # f ⊗ g ⊗ h # sym assoc⊗

10 / 24

Agda’s Rewrite Rules1

Adding user-specified definitional equalities to the theory.

data N : Set where
zero : N
suc : N → N

+ : N → N → N
zero + n = n
(suc m) + n = suc (m + n)

unit+ : (a : N) → a + zero ≡ a
unit+ zero = refl
unit+ (suc a) = cong suc (unit+ a)

{-# REWRITE unit+ #-}

assoc+ : (a b c : N) → (a + b) + c ≡ a + b + c
assoc+ zero b c = refl
assoc+ (suc a) b c = cong suc (assoc+ a b c)

{-# REWRITE assoc+ #-}

1Cockx, “Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules”.
11 / 24

Agda’s Rewrite Rules1

Adding user-specified definitional equalities to the theory.

data N : Set where
zero : N
suc : N → N

+ : N → N → N
zero + n = n
(suc m) + n = suc (m + n)

unit+ : (a : N) → a + zero ≡ a
unit+ zero = refl
unit+ (suc a) = cong suc (unit+ a)

{-# REWRITE unit+ #-}

assoc+ : (a b c : N) → (a + b) + c ≡ a + b + c
assoc+ zero b c = refl
assoc+ (suc a) b c = cong suc (assoc+ a b c)

{-# REWRITE assoc+ #-}

1Cockx, “Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules”.
11 / 24

Agda’s Rewrite Rules1

Adding user-specified definitional equalities to the theory.

data N : Set where
zero : N
suc : N → N

+ : N → N → N
zero + n = n
(suc m) + n = suc (m + n)

unit+ : (a : N) → a + zero ≡ a
unit+ zero = refl
unit+ (suc a) = cong suc (unit+ a)

{-# REWRITE unit+ #-}

assoc+ : (a b c : N) → (a + b) + c ≡ a + b + c
assoc+ zero b c = refl
assoc+ (suc a) b c = cong suc (assoc+ a b c)

{-# REWRITE assoc+ #-}

1Cockx, “Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules”.
11 / 24

Agda’s Rewrite Rules1

Adding user-specified definitional equalities to the theory.

data N : Set where
zero : N
suc : N → N

+ : N → N → N
zero + n = n
(suc m) + n = suc (m + n)

unit+ : (a : N) → a + zero ≡ a
unit+ zero = refl
unit+ (suc a) = cong suc (unit+ a)

{-# REWRITE unit+ #-}

assoc+ : (a b c : N) → (a + b) + c ≡ a + b + c
assoc+ zero b c = refl
assoc+ (suc a) b c = cong suc (assoc+ a b c)

{-# REWRITE assoc+ #-}

1Cockx, “Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules”.
11 / 24

Agda’s Rewrite Rules1

Adding user-specified definitional equalities to the theory.

data N : Set where
zero : N
suc : N → N

+ : N → N → N
zero + n = n
(suc m) + n = suc (m + n)

unit+ : (a : N) → a + zero ≡ a
unit+ zero = refl
unit+ (suc a) = cong suc (unit+ a)

{-# REWRITE unit+ #-}

assoc+ : (a b c : N) → (a + b) + c ≡ a + b + c
assoc+ zero b c = refl
assoc+ (suc a) b c = cong suc (assoc+ a b c)

{-# REWRITE assoc+ #-}

1Cockx, “Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules”.
11 / 24

Agda’s Rewrite Rules1

Adding user-specified definitional equalities to the theory.

data N : Set where
zero : N
suc : N → N

+ : N → N → N
zero + n = n
(suc m) + n = suc (m + n)

unit+ : (a : N) → a + zero ≡ a
unit+ zero = refl
unit+ (suc a) = cong suc (unit+ a)

{-# REWRITE unit+ #-}

assoc+ : (a b c : N) → (a + b) + c ≡ a + b + c
assoc+ zero b c = refl
assoc+ (suc a) b c = cong suc (assoc+ a b c)

{-# REWRITE assoc+ #-}

1Cockx, “Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules”.
11 / 24

Rewrite Example

data Vec (A : Set) : N → Set where
[] : Vec A zero
:: : ∀{n} → (x : A) (xs : Vec A n) → Vec A (suc n)

++ : {A : Set}{m n : N} →
Vec A m → Vec A n → Vec A (m + n)

[] ++ vs’ = vs’
(v :: vs) ++ vs’ = v :: (vs ++ vs’)

assoc++ : {X : Set} → {k l m : N} (as : Vec X k)(bs : Vec X l)(cs : Vec X m) →
(as ++ bs) ++ cs ≡ as ++ (bs ++ cs)

It typechecks! Even though:

• (as ++ bs) ++ cs : Vec X ((k ++ l) ++ m)

• as ++ (bs ++ cs) : Vec X (k ++ (l ++ m))

12 / 24

Rewrite Example

data Vec (A : Set) : N → Set where
[] : Vec A zero
:: : ∀{n} → (x : A) (xs : Vec A n) → Vec A (suc n)

++ : {A : Set}{m n : N} →
Vec A m → Vec A n → Vec A (m + n)

[] ++ vs’ = vs’
(v :: vs) ++ vs’ = v :: (vs ++ vs’)

assoc++ : {X : Set} → {k l m : N} (as : Vec X k)(bs : Vec X l)(cs : Vec X m) →
(as ++ bs) ++ cs ≡ as ++ (bs ++ cs)

It typechecks! Even though:

• (as ++ bs) ++ cs : Vec X ((k ++ l) ++ m)

• as ++ (bs ++ cs) : Vec X (k ++ (l ++ m))

12 / 24

Rewrite Example

data Vec (A : Set) : N → Set where
[] : Vec A zero
:: : ∀{n} → (x : A) (xs : Vec A n) → Vec A (suc n)

++ : {A : Set}{m n : N} →
Vec A m → Vec A n → Vec A (m + n)

[] ++ vs’ = vs’
(v :: vs) ++ vs’ = v :: (vs ++ vs’)

assoc++ : {X : Set} → {k l m : N} (as : Vec X k)(bs : Vec X l)(cs : Vec X m) →
(as ++ bs) ++ cs ≡ as ++ (bs ++ cs)

It typechecks! Even though:

• (as ++ bs) ++ cs : Vec X ((k ++ l) ++ m)

• as ++ (bs ++ cs) : Vec X (k ++ (l ++ m))

12 / 24

Use rewrite rules on arbitrary relation

I can use rewrite rules on relations that I have specified myself.

• idea: work with equivalence classes of the relation

• choose one representative and rewrite everything else to it (e.g. associate to the right)

Plan: use it to declare coherence isomorphisms of SMCs as definitional equalities.

• extract computationally relevant part of a proof

• proof in Agda to look like the paper one

13 / 24

Use rewrite rules on arbitrary relation

I can use rewrite rules on relations that I have specified myself.

• idea: work with equivalence classes of the relation

• choose one representative and rewrite everything else to it (e.g. associate to the right)

Plan: use it to declare coherence isomorphisms of SMCs as definitional equalities.

• extract computationally relevant part of a proof

• proof in Agda to look like the paper one

13 / 24

Rewrite equations on objects

assoc⊗ : (A ⊗ B) ⊗ C ↔ A ⊗ B ⊗ C

{-# REWRITE assoc⊗ #-}

unit⊗l : (A : Ob) → (one ⊗ A) ↔ A

unit⊗r : (A : Ob) → (A ⊗ one) ↔ A

{-# REWRITE unit⊗l unit⊗r #-}

14 / 24

Rewrite equations on objects

assoc⊗ : (A ⊗ B) ⊗ C ↔ A ⊗ B ⊗ C

{-# REWRITE assoc⊗ #-}

unit⊗l : (A : Ob) → (one ⊗ A) ↔ A

unit⊗r : (A : Ob) → (A ⊗ one) ↔ A

{-# REWRITE unit⊗l unit⊗r #-}

14 / 24

Equations on morphisms

assoc⊗mr : {f : A ↔ B}{g : B ↔ C}{h : C ↔ D} → (f ⊗ g) ⊗ h ⇔ f ⊗ g ⊗ h

unit⊗ml : {f : A ↔ B} → id one ⊗ f ⇔ f
unit⊗mr : {f : A ↔ B} → f ⊗ id one ⇔ f

Add these equations as definitional equalities, too!

{-# REWRITE assoc⊗mr unit⊗ml unit⊗mr #-}

15 / 24

Equations on morphisms

assoc⊗mr : {f : A ↔ B}{g : B ↔ C}{h : C ↔ D} → (f ⊗ g) ⊗ h ⇔ f ⊗ g ⊗ h

unit⊗ml : {f : A ↔ B} → id one ⊗ f ⇔ f
unit⊗mr : {f : A ↔ B} → f ⊗ id one ⇔ f

Add these equations as definitional equalities, too!

{-# REWRITE assoc⊗mr unit⊗ml unit⊗mr #-}

15 / 24

Equations on morphisms

assoc⊗mr : {f : A ↔ B}{g : B ↔ C}{h : C ↔ D} → (f ⊗ g) ⊗ h ⇔ f ⊗ g ⊗ h

unit⊗ml : {f : A ↔ B} → id one ⊗ f ⇔ f
unit⊗mr : {f : A ↔ B} → f ⊗ id one ⇔ f

Add these equations as definitional equalities, too!

{-# REWRITE assoc⊗mr unit⊗ml unit⊗mr #-}

15 / 24

Strict SMCs in Agda

Even stronger: we can now strictify the category, by declaring. . .

assoc⊗=id : assoc⊗ {A}{B}{C} ⇔ id (A ⊗ B ⊗ C)
unit⊗l=id : unit⊗l A ⇔ id A
unit⊗r=id : unit⊗r A ⇔ id A

. . . and immediately rewriting by these equations.

Additionally, we rewrite by functoriality of ⊗, e.g.

id⊗id : (id t1 ⊗↓ id t2) ⇔ id (t1 ⊗ t2)

16 / 24

Strict SMCs in Agda

Even stronger: we can now strictify the category, by declaring. . .

assoc⊗=id : assoc⊗ {A}{B}{C} ⇔ id (A ⊗ B ⊗ C)
unit⊗l=id : unit⊗l A ⇔ id A
unit⊗r=id : unit⊗r A ⇔ id A

. . . and immediately rewriting by these equations.

Additionally, we rewrite by functoriality of ⊗, e.g.

id⊗id : (id t1 ⊗↓ id t2) ⇔ id (t1 ⊗ t2)

16 / 24

Triangle Equality in a strict SMC

(A ⊗ 1)⊗ B A ⊗ (1 ⊗ B)

A ⊗ B

αA,1,B

ρA⊗1B 1A⊗λB

triangle : {A B : Ob} → unit⊗r A ⊗ id B ⇔ assoc⊗r {A}{one}{B} # (id A ⊗ unit⊗l B)
triangle = id

17 / 24

Pentagon Equality in a strict SMC

((A ⊗ B)⊗ C)⊗ D (A ⊗ B)⊗ C ⊗ D A ⊗ B ⊗ C ⊗ D

(A ⊗ B ⊗ C)⊗ D A ⊗ (B ⊗ C)⊗ D

αA⊗B,C,D

αA,B,C⊗1D

αA,B,C⊗D

αA,B⊗C,D

1A⊗αB,C,D

pentagon : {A B C D : Ob} →
assoc⊗r {A ⊗ B} {C} {D} # assoc⊗r {A} {B} {C ⊗ D}

⇔ assoc⊗r {A} {B} {C} ⊗ id D # assoc⊗r {A} {B ⊗ C} {D} # id A ⊗ assoc⊗r {B} {C} {D}
pentagon = id

18 / 24

Hexagon in a strict SMC

(A ⊗ B)⊗ C A ⊗ B ⊗ C (B ⊗ C)⊗ A

(B ⊗ A)⊗ C B ⊗ A ⊗ C B ⊗ C ⊗ A

αA,B,C

σA,B⊗1C

σA,B⊗C

αB,C,A

αB,A,C 1B⊗σA,C

19 / 24

What to use it for?

I’m interested in rig categories2:

• Structural foundation for the semantics of quantum computation.

• Contain two monoidal structures (⊗,1) and (⊕,0).

• Distributive law between them: A ⊗ (B ⊕ C) = (A ⊗ B)⊕ (A ⊗ C).

• a lot of coherence conditions! Including a lot about structural equivalences.

2Heunen and Kaarsgaard, “Quantum information effects”.
20 / 24

Two versions of not3

Type of booleans:

bool = one ⊕ one

Two implementations of the not operation:

not1 : bool ↔ bool
not1 = swap⊕ one one

not2 : bool ↔ bool
not2 = sym (unit⊗l (one ⊕ one))

swap⊗ one (one ⊕ one)
swap⊕ one one ⊗↓ id one
swap⊗ (one ⊕ one) one
unit⊗l (one ⊕ one)

3Carette and Sabry, “Computing with Semirings and Weak Rig Groupoids”.
21 / 24

Two versions of not3

Type of booleans:

bool = one ⊕ one

Two implementations of the not operation:

not1 : bool ↔ bool
not1 = swap⊕ one one

not2 : bool ↔ bool
not2 = sym (unit⊗l (one ⊕ one))

swap⊗ one (one ⊕ one)
swap⊕ one one ⊗↓ id one
swap⊗ (one ⊕ one) one
unit⊗l (one ⊕ one)

3Carette and Sabry, “Computing with Semirings and Weak Rig Groupoids”.
21 / 24

Two versions of not3

Type of booleans:

bool = one ⊕ one

Two implementations of the not operation:

not1 : bool ↔ bool
not1 = swap⊕ one one

not2 : bool ↔ bool
not2 = sym (unit⊗l (one ⊕ one))

swap⊗ one (one ⊕ one)
swap⊕ one one ⊗↓ id one
swap⊗ (one ⊕ one) one
unit⊗l (one ⊕ one)

3Carette and Sabry, “Computing with Semirings and Weak Rig Groupoids”.
21 / 24

Not is not

same-not : not2 ⇔ not1
same-not =

swap⊗-nat {one ⊕ one}{one ⊕ one}{one}{one}
{swap⊕ one one}{id one}
#↓ id {c = swap⊗ (one ⊕ one) one}

(id #↓ swap⊗2 {one}{one ⊕ one}
unit#↓r {one ⊗ (one ⊕ one)}
unit⊗↓l (swap⊕ one one))

22 / 24

Not is not

same-not : not2 ⇔ not1
same-not =

swap⊗-nat {one ⊕ one}{one ⊕ one}{one}{one}
{swap⊕ one one}{id one}
#↓ id {c = swap⊗ (one ⊕ one) one}

(id #↓ swap⊗2 {one}{one ⊕ one}
unit#↓r {one ⊗ (one ⊕ one)}
unit⊗↓l (swap⊕ one one))

22 / 24

Confluence checking

• Agda has a local-confluence-check pragma for rewrite rules

• this does not interact well with rewrite rules that typecheck because of other rewrite rules:

assoc⊗mr : {f : A ↔ B}{g : B ↔ C}{h : C ↔ D} → (f ⊗ g) ⊗ h ⇔ f ⊗ g ⊗ h

• check confluence by hand. . .

23 / 24

Summary

• strict SMC contain a lot of trivial structural coherence isomorphisms

• with Agda’s rewrite rules these can be implicit in the formalisation

• can extract the computational interesting part of a proof

Some future ideas:

• apply to other flavours of MC (e.g. braided)

• explore rewriting of setoid equalities in Agda

• rewriting heterogeneous equalities?

Thank you for your attention!

24 / 24

Summary

• strict SMC contain a lot of trivial structural coherence isomorphisms

• with Agda’s rewrite rules these can be implicit in the formalisation

• can extract the computational interesting part of a proof

Some future ideas:

• apply to other flavours of MC (e.g. braided)

• explore rewriting of setoid equalities in Agda

• rewriting heterogeneous equalities?

Thank you for your attention!

24 / 24

Summary

• strict SMC contain a lot of trivial structural coherence isomorphisms

• with Agda’s rewrite rules these can be implicit in the formalisation

• can extract the computational interesting part of a proof

Some future ideas:

• apply to other flavours of MC (e.g. braided)

• explore rewriting of setoid equalities in Agda

• rewriting heterogeneous equalities?

Thank you for your attention!

24 / 24

Thank you for your attention!

Reasoning with strict symmetric monoidal categories in Agda

Malin Altenmüller
malin.altenmuller@ed.ac.uk

Women in EPN, 10th June 2025

Carette, Jacques and Amr Sabry. “Computing with Semirings and Weak Rig Groupoids”. In: Programming
Languages and Systems - 25th European Symposium on Programming, ESOP 2016, Held as Part of the European
Joint Conferences on Theory and Practice of So�ware, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings. Ed. by Peter Thiemann. Vol. 9632. Lecture Notes in Computer Science. Springer, 2016,
pp. 123–148. doi: 10.1007/978-3-662-49498-1_6. url:
https://doi.org/10.1007/978-3-662-49498-1_6.

Cockx, Jesper. “Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules”. In: 25th
International Conference on Types for Proofs and Programs, TYPES 2019, June 11-14, 2019, Oslo, Norway.
Ed. by Marc Bezem and Assia Mahboubi. Vol. 175. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019, 2:1–2:27. doi: 10.4230/LIPICS.TYPES.2019.2. url:
https://doi.org/10.4230/LIPIcs.TYPES.2019.2.

Heunen, Chris and Robin Kaarsgaard. “Quantum information effects”. In: Proc. ACM Program. Lang. 6.POPL
(2022), pp. 1–27. doi: 10.1145/3498663. url: https://doi.org/10.1145/3498663.

https://doi.org/10.1007/978-3-662-49498-1_6
https://doi.org/10.1007/978-3-662-49498-1_6
https://doi.org/10.4230/LIPICS.TYPES.2019.2
https://doi.org/10.4230/LIPIcs.TYPES.2019.2
https://doi.org/10.1145/3498663
https://doi.org/10.1145/3498663

	References

