
Ecumenical logic

Elaine Pimentel

Glasgow, Scotland

UCL, UK
June 10, 2025

1 / 47
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Motivation II – What is ecumenism?

The terms ecumenism and ecumenical come from the Greek oikoumene, which
means “the whole inhabited world”.
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Philosophical motivation

Logical inferentialism:

I the meaning of the logical constants can be specified by the rules that
determine their correct use;

I proof-theoretical requirements on admissible logical rules: harmony and
separability;

I pure logical systems: negation is not used in premises.
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Logical motivation (dialogue by Luiz Carlos)

I IL: if what you mean by (A ∨ B) is ¬(¬A ∧ ¬B), then I can accept the
validity of (A ∨ ¬A)!
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say that Goldbach’s conjecture is either true or false, I am not saying that
it would be contradictory to assert that it is not true and that it is not the
case that it is not true!

I IL: but you must realize that, at the end of the day, you just have one
logical operator!!! (can you guess one?)

I E.g.:
Quinne dagger
A B A ↓ B
1 1 0
1 0 0
0 1 0
0 0 1

Sheffer stroke
A B A ↑ B
1 1 0
1 0 1
0 1 1
0 0 1
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Logical motivation (dialogue by Luiz Carlos)

I IL: if what you mean by (A ∨ B) is ¬(¬A ∧ ¬B), then I can accept the
validity of (A ∨ ¬A)!

I CL: but I do not mean ¬(¬A ∧ ¬¬A) by (A ∨ ¬A). One must distinguish
the excluded-middle from the the principle of non-contradiction. When I
say that Goldbach’s conjecture is either true or false, I am not saying that
it would be contradictory to assert that it is not true and that it is not the
case that it is not true!

I IL: but you must realize that, at the end of the day, you just have one
logical operator!!! (can you guess one?)

I CL: But this is not at all true! The fact that we can define one operator in
terms of other operators does not imply that we don’t have different
operators!
It is true that we can prove ` (A ∨c B)⇔ ¬(¬A ∧ ¬B) in the ecumenical
system, but this does not mean that we don’t have three different
operators: ¬, ∨c and ∧.
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Mathematical motivation (example by Emerson Sales)

if x + y = 2z then x ≥ z or y ≥ z .
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You don’t need to go classical every time

I Mathematicians often prefer a direct proof over a proof by contradiction.

I Prove p → q directly: assume p, make some intermediary conclusions r1,
r2 then deduce q. Thus, our proof not only establishes that p implies q,
but also, that p implies r1 and r2 etc. So we come to a fuller
understanding of what is going on in the p worlds.

I Prove the contrapositive ¬q → ¬p directly: assume ¬q, make intermediary
conclusions r1, r2 then conclude ¬p. Thus, we have also established not
only that ¬q implies ¬p, but also, that it implies r1 and r2 etc. Thus, the
proof tells us about what else must be true in worlds where q fails.

I Prove p ∧ ¬q → ⊥: argue r1, r2, and so on, before arriving at a
contradiction. The statements r1 and r2 are all deduced under the
contradictory hypothesis, which ultimately does not hold in any
mathematical situation. The proof has provided extra knowledge about a
nonexistent, contradictory land.
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proof tells us about what else must be true in worlds where q fails.

I Prove p ∧ ¬q → ⊥: argue r1, r2, and so on, before arriving at a
contradiction. The statements r1 and r2 are all deduced under the
contradictory hypothesis, which ultimately does not hold in any
mathematical situation. The proof has provided extra knowledge about a
nonexistent, contradictory land.

Source: Joel David Hamkins in mathoverflow.
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You don’t need to go classical every time

I Mathematicians prefer a direct proof over a proof by contradiction.

I In analysis, proofs by contraposition tend to be finitary in nature and yield
effective bounds, whereas proofs by contradiction (especially when
combined with compactness arguments) tend to be infinitary in nature and
do not easily yield such bounds.

I Computational problem of trying to find a path in a maze from A to B.

I Direct approach: start from A and explore all reasonable-looking directions
from A until one reaches B.

I Contrapositive: start backwards from B and try to reach A; then at the end
one simply reverses the path.

I Contradiction = meet-in-the-middle strategy: explore both forwards from A
and backwards from B until one gets an intersection. This is a faster
strategy, with a run time which is typically the square root of the run time
of the other two approaches.
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In this talk

What makes logical connectives (including modalities) classical or intuitionistic?

Ecumenical types! (with Delia Kesner, Mariana Milicich and Louis Riboulet)

(Maybe) Modalities (with Sonia Marin, Luiz Carlos Pereira and Emerson Sales)
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What is behind Ecumenism?

For a classical logician A ∨ ¬A holds.

For an intuitionistic logician it does not.
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` A ∨ ¬A ∨R

?
A ` ⊥
` ¬A ¬R

` A ∨ ¬A ∨R2

Prawitz: They are not talking about the same connective(s) (Prawitz 2015)

“The classical logician is not asserting what the intuitionistic logician
denies: The classical logician asserts

A ∨c ¬A

to which the intuitionist does not object; He objects to the universal
validity of

A ∨i ¬A,

which is not asserted by the classical logician.”
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Prawitz’ idea

I Why not having a deduction system where classical and intuitionistic logic
could coexist in peace?

I The classical logician and the intuitionistic logician would share the
universal quantifier, conjunction, negation and the constant for the absurd,
but they would each have their own existential quantifier, disjunction and
implication, with different meanings.

I Prawitz’ main idea is that these different meanings are given by a
semantical framework that can be accepted by both parties.

I The surprising aspect of Prawitz’ system is its ability to share negations
between the classical and the intuitionistic system, since many consider
negation subject to the controversy between classical and intuitionistic
logic, as implication is.
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Ecumenical connectives and rules – NE

[A,¬B]

Π
⊥

A→c B
→c I

[¬A,¬B]

Π
⊥

A ∨c B
∨c I

[∀x .¬A]

Π
⊥
∃cx .A

∃c I

Classical

[A]

Π
⊥
¬A ¬I

A B
A ∧ B

∧I

A(y)

∀x .A ∀I

Shared

[A]

Π
B

A→i B
→i I

Aj

A1 ∨i A2
∨j

i I

A(t)

∃ix .A
∃i I

Intuitionistic

(Prawitz 2015)
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Provability. . .

Provable in NE:
1. `NE (A→c ⊥)⇔i (A→i ⊥)⇔i (¬A);

2. `NE (A ∨c B)⇔i ¬(¬A ∧ ¬B);

3. `NE (A→c B)⇔i ¬(A ∧ ¬B);

4. `NE (∃cx .A)⇔i ¬(∀x .¬A).
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2. `NE (A ∨c B)⇔i ¬(¬A ∧ ¬B);

3. `NE (A→c B)⇔i ¬(A ∧ ¬B);

4. `NE (∃cx .A)⇔i ¬(∀x .¬A).

However:
5. `NE (A→i B)→i (A→c B) but 6`NE (A→c B)→i (A→i B) in general;
6. `NE A ∨c ¬A but 6`NE A ∨i ¬A in general;
7. `NE (¬¬A)→c A but 6`NE (¬¬A)→i A in general;

8. `NE (A ∧ (A→i B))→i B but 6`NE (A ∧ (A→c B))→i B in general;

9. `NE ∀x .A→i ¬∃cx .¬A but 6`NE ¬∃cx .¬A→i ∀x .A in general.
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. . . and proofs

Theorem
Γ ` A is provable in NE iff `NE

∧
Γ→i A.

I The Ecumenical entailment is intuitionistic!

I That is, even though some formulas carry with them the notion of classical
truth, the logical consequence is intrinsically intuitionistic.

I As it should be, since the ecumenical system embeds the classical behavior

into intuitionistic logic.

I But if A is classical, the entailment can be read classically.

I And this justifies the ecumenical view of entailments in Prawitz’s original
proposal.
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Π
B
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Π
⊥

A→c B
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A ¬A
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A
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Negation messing up again...

NE is not pure: the definition of classical connectives depend on other
connectives.
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connectives.
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One way of purifying systems: polarities.

Another way: stoup
∆; Σ

where Σ has at most one formula.

For example:
∆,∃cx .A;A(t)

∆;∃cx .A
∃c I

Finally, for Prawitz: pc ≡ ¬¬pi – and this is unfortunate!
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Ecumenical rules with stoup – NEs

[·;A] Γ

Π
∆,B; ·

∆;A→c B
→c I

∆,A,B; ·
∆;A ∨c B

∨c I

∆, ∃cx .A;A(t)

∆;∃cx .A
∃c I

Classical

[·;A] Γ

Π
∆; ·

∆;¬A ¬I

∆1;A ∆2;B

∆1,∆2;A ∧ B
∧I

∆;A(y)

∆;∀x .A ∀I

Shared

[·;A] Γ

Π
∆;B

∆;A→i B
→i I

∆;Aj

∆;A1 ∨i A2
∨j

i I

∆;A(t)

∆; ∃ix .A
∃i I

Intuitionistic

(Pereira & Pimentel 2022)

The idea:
Γ `NEs ∆; Σ iff Γ,¬∆ `NE Σ
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Revisiting Pierce
Prove ·; ((A→c B)→c A)→c A in NEs.

Rules:

∆;A→i B ∆;A

∆;B
→i E

[·;A]

Π
∆;B

∆;A→i B
→i I

∆;A→c B ∆;A

[·;B]

Π
∆; ·

∆; · →c E

[·;A]

Π
∆,B; ·

∆;A→c B
→c I

∆;A

∆,A; · der
∆;B

∆,A;B
W
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What we can do with that

I Normalization

I Curry-Howard correspondence

I No double negation translation (Pereira & Pimentel & de Paiva 2025)

23 / 47



What we can do with that

I Normalization

I Curry-Howard correspondence

I No double negation translation (Pereira & Pimentel & de Paiva 2025)

23 / 47



What we can do with that

I Normalization

I Curry-Howard correspondence

I No double negation translation (Pereira & Pimentel & de Paiva 2025)

23 / 47



Outline

Ecumenism

Ecumenical natural deduction

Towards purity

Ecumenical terms

Modalities

The challenge of constructive modal logic

Ecumenical modal logic

Purity!

Concluding

24 / 47



λµLEp-calculus

Terms:
t, s, r ::= x

| λx . t
| t (s, x .r)
| µ(x , α). c
| t [s, x .c]
| #c

Commands:
c ::= [α] t

| t [s, x .c]

Constructors: λx . t and µ(x , α). c

Generalized applications: t (s, x .r) and t [s, x .r ]

Activation operator: #c.
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Type system

Types:
A,B ::= α | A→i B | A→c B

Typing judgments: Γ ` O : A ; ∆, where O is a term or a command.

ax
�, x : A ` x : A ; �

�, x : A ` t : B ; �
I-!i

� ` �x. t : A !i B ; �

� ` t : A !i B ; � � ` s : A ; � �, x : B ` r : C ; �
E-!i

� ` t (s, x.r) : C ; �

�, x : A ` c : ? ; � [ {↵ : B}
I-!c

� ` µ(x,↵). c : A !c B ; �

� ` t : A !c B ; � � ` s : A ; � �, x : B ` c : ? ; �
E-!c

� ` t [s, x.c] : ? ; �

� ` t : A ; �
der

� ` [↵] t : ? ; � [ {↵ : A}
� ` c : ? ; �

Wi
� ` #c : B ; �

Figure 3: Ecumenical type system for the �µLEp-calculus.

6.2.1 Annotations

1. Intuitionistic Weakening is not used for normalization, but for provability
of non minimal intuitionistic logic.

Example: ¬B, A !c B, A ` C; · is not provable:

(A !c B is in �)

� ` A !c B; ·
(A is in �)

� ` A; ·
(¬B is in �)

�, B ` ·; ·
� ` ·; · !c -elim

� ` C; · W

with � = ¬B, A !c B, A. The strategy of this proof is to remove C from
the stoup. This example indicates that the reductio ad absurdum can’t be
captured without having intuitionistic weakening.

2. Instead of having commands without types, we could use ?.

3. La lógica clásica colapsa si tenemos:

�, x : A ` c : ? ; ↵ : B,�

�, x : A ` µ↵.c : B ; �

4. We don’t have A ! ?, it’s captured with !c (and A !i ? ⌘ A !c ?).
But it depends on the system used.

5. In this example, #c changes its type! (Note: this was fixed, I think)

� ` #c : A !i B ; � � ` r : A ; � �, x : B ` u : C ; �

� ` #c (r, x.u) : C ; �

6. Observation (16/11/22): Since types ((A !c B) !c A) !c A and
((A !i B) !i A) !c A are equivalent, then the terms µ(x,↵). x [µ(y,�). [↵] y, y.[↵] y]
and µ(x,↵). x [�y. #[↵] y, y.[↵] y] should behave the same way.

9
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Peirce typed!

Let

6.3 Typing examples

1. Peirce’s Law: Using the observation 6 from the previous subsection (and
the Example 1), we have two terms with equivalent types4.

1.1 Let

⇡ :=

0
BBB@

ax
�, y : A ` y : A ; � : B

der
�, y : A ` [↵] y : ? ; ↵ : A,� : B

I-!c
� ` µ(y,�). [↵] y : A !c B ; ↵ : A

1
CCCA

We build the following derivation:

ax
� ` x : (A !c B) !c A ; ↵ : A

...
⇡

ax
�, y : A ` y : A ; ·

der
�, y : A ` [↵] y : ? ; ↵ : A

E-!c
� ` x [µ(y,�). [↵] y, y.[↵] y] : ? ; ↵ : A

I-!c; ` µ(x,↵). x [µ(y,�). [↵] y, y.[↵] y] : ((A !c B) !c A) !c A ; ·

where � = x : (A !c B) !c A

1.2 Let

⇡ :=

0
BBBBBB@

ax
�, y : A ` y : A ; � : B

der
�, y : A ` [↵] y : ? ; ↵ : A,� : B

Wi
�, y : A ` #[↵] y : B ; ↵ : A,� : B

I-!i
� ` �y. #[↵] y : A !i B ; ↵ : A

1
CCCCCCA

We build the following derivation:

ax
� ` x : (A !i B) !i A ; ↵ : A

...
⇡

ax
�, y : A ` y : A ; ·

der
�, y : A ` [↵] y : ? ; ↵ : A

E-!c
� ` x [�y. #[↵] y, y.[↵] y] : ? ; ↵ : A

I-!c; ` µ(x,↵). x [�y. #[↵] y, y.[↵] y] : ((A !i B) !i A) !c A ; ·

where � = x : (A !i B) !i A

4four actually, as the types ((A !i B) !c A) !c A and ((A !c B) !c A) !c A are
equivalent to the previous two.
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Relational models for classical modal logic

M,w  p iff p ∈ V (w);
M,w  ⊥ never holds;
M,w  ¬A iff M,w 6 A;
M,w  A ∧ B iff M,w  A and M,w  B;
M,w  A ∨ B iff M,w  A or M,w  B;
M,w  A→ B iff M,w 6 A or M,w  B;
M,w  2A iff for all v .wRv implies M, v  A;
M,w  3A iff there exists v .wRv and M, v  A.
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Relational models for intuitionistic logic

M,w  p iff p ∈ V (w);
M,w  ⊥ never holds;
M,w  ¬A iff for all v .w ≤ v .M, v 6 A;
M,w  A ∧ B iff M,w  A and M,w  B;
M,w  A ∨ B iff M,w  A or M,w  B;
M,w  A→ B iff for all v .w ≤ v .M, v  A implies M, v  B.
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Classical Modal Logic

I Formulas: A ::= p | ⊥ | A ∧ A | A ∨ A | A→ A | 2A | 3A

I Duality by De Morgan laws and ¬2A = 3¬A
I Axioms: classical propositional logic and

k: 2(A→ B)→ (2A→ 2B)

k2 : 2(A→ B)→ (3A→3B)
k3 : 3(A ∨ B)→ (3A ∨3B)
k4 : (3A→ 2B)→ 2(A→ B)
k5 : ¬3⊥

I Rules: modus ponens:
A A→ B

B
necessitation:

A

2A

I Semantics: Relational structures (W ,R)

a non-empty set W of worlds;

a binary relation R ⊆ W ×W ;

a preorder ≤ on W .

(F1) u′ v ′
R

u

≤

v
R

≤

(F2) u′
R

v ′

u

≤

R
v

≤

x � 2A⇔ ∀y , z . if x≤y & yRz then z � A

x � 3A⇔ ∃y .xRy and y � A
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Classical modal proof theory

Axioms: classical propositional logic and

k: 2(A→ B)→ (2A→ 2B)

k2 : 2(A→ B)→ (3A→3B)
k3 : 3(A ∨ B)→ (3A ∨3B)
k4 : (3A→ 2B)→ 2(A→ B)
k5 : ¬3⊥

Sequent system: classical sequent calculus and

Γ ` A
k2

2Γ ` 2A

Γ,A ` B
k3

2Γ,3A ` 3B

Problem? k4 is not derivable.

I not a problem for modal type theory...

labeled sequent system: (Simpson 1994)

xRy , Γ, x : 2A, y : A⇒ z : B
2L

xRy , Γ, x : 2A⇒ z : B

xRy , Γ⇒ y : A
2R y is fresh

Γ⇒ x : 2A

xRy , Γ, y : A⇒ z : B
3L y is fresh

Γ, x : 3A⇒ z : B

xRy , Γ⇒ y : A
3R

xRy , Γ⇒ x : 3A
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Ecumenical modalities

[�A]x = ∀y(R(x , y)→ [A]y ) [3A]x = ∃y(R(x , y) ∧ [A]y )
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[�A]x = ∀y(R(x , y)→ [A]y ) [3A]x = ∃y(R(x , y) ∧ [A]y )

M,w |= �A iff for all v such that wRv ,M, v |= A.
M,w |= 3A iff there exists v such that wRv and M, v |= A.

R(x , y) represents the accessibility relation R in a Kripke frame.
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Ecumenical modalities

[�A]x = ∀y(R(x , y)→ [A]y ) [3A]x = ∃y(R(x , y) ∧ [A]y )

`OL A iff `ML ∀x .[A]x

I ML = classical logic ; OL = classical modal logic K.
I ML = intuitionistic logic ; OL = intuitionistic modal logic IK.
I ML = Ecumenical logic ; OL = Ecumenical modal logic EK.
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[�A]ex = ∀y(R(x , y)→i [A]ey )

[3iA]ex = ∃iy(R(x , y) ∧ [A]ey ) [3cA]ex = ∃cy(R(x , y) ∧ [A]ey )

I 3cA⇔i ¬�¬A but 3iA 6⇔i ¬�¬A.
I Restricted to the classical fragment: � and 3c are duals.
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Ecumenical Modal Logic

I Formulas: A ::= pi | pc | ⊥ | A ∧ A | A ∨i A | A ∨c A | A→i A | A→c A |
2A | 3iA | 3cA

I Independence of the modalities

I Axioms: ecumenical propositional logic and

k1 : 2(A→i B)→i (2A→i 2B) EK (Marin et al. 2020)

k2 : 2(A→i B)→i (3iA→i 3iB)
k3 : 3i (A ∨i B)→i (3A ∨i 3B)
k4 : (3iA→i 2B)→i 2(A→i B)
k5 : ¬3i⊥

I Rules: modus ponens:
A A→ B

B
necessitation:

A

2A

I Semantics: Ecumenical Birelational structures (W ,R,≤)

a non-empty set W of worlds;

a binary relation R ⊆ W ×W ;

a preorder ≤ on W .

(F1) u′ v ′
R

u

≤

v
R

≤

(F2) u′
R

v ′

u

≤

R
v

≤

M,w |=E ♦cA iff ∀v ≥ w .∃u.v (≤ ◦R ◦ ≤) u, M, u |=E A
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Ecumenical modal proof theory

Labeled modal rules:

x : 2¬A, Γ ` x : ⊥
Γ ` x : 3cA

3cR xRy , Γ ` y : A

Γ ` x : 2A
�R

xRy , Γ ` y : A

xRy , Γ ` x : 3iA
3iR

Extensions:

Axiom Condition First-Order Formula
T : �A→i A ∧ A→i 3iA Reflexivity ∀x.R(x, x)

4 : �A→i ��A ∧ 3i3iA→i 3iA Transitivity ∀x, y, z.(R(x, y) ∧ R(y, z))→i R(x, z)
5 : �A→i �3iA ∧ 3i�A→i 3iA Euclideaness ∀x, y, z.(R(x, y) ∧ R(x, z))→i R(y, z)

B : A→i �3iA ∧ 3i�A→i A Symmetry ∀x, y.R(x, y)→i R(y, x)

Rules:
xRx , Γ ` w : C

Γ ` w : C
T

xRz , Γ ` w : C

xRy , yRz , Γ ` w : C
4

yRz , Γ ` w : C

xRy , xRz , Γ ` w : C
5

yRx , Γ ` w : C

xRy , Γ ` w : C
B
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Crossing the fine line!!

Easy to prove: `labEK x : 2A→i ¬3i¬A.

Assume T + ¬3i¬A→i 2A. Then

xRy , y : A, y : ¬(A ∨i ¬A) ` y : A
init

xRy , y : A, y : ¬(A ∨i ¬A) ` y : ⊥
xRy , y : ¬(A ∨i ¬A) ` x : ⊥
x : 3i¬(A ∨i ¬A) ` x : ⊥ 3iL

` x : ¬3i¬(A ∨i ¬A)
¬R

` x : 2(A ∨i ¬A)
eq

xRx , x : (A ∨i ¬A) ` x : A ∨i ¬A
init

xRx , x : 2(A ∨i ¬A) ` x : A ∨i ¬A
2L

x : 2(A ∨i ¬A) ` x : A ∨i ¬A
T

` x : A ∨i ¬A
cut
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Getting rid of negation

LE

Γ,¬∆ ` C

Γ ` ∆;C

LCE

Γ,A ` B

Γ ` A→i B
→i R

Γ,A ` ∆;B

Γ ` ∆;A→i B
→i R

Γ,A,¬B ` ⊥
Γ ` A→c B

→c R
Γ,A ` B,∆; ·

Γ ` A→c B,∆; · →c R

labEK

x : 2¬A, Γ ` x : ⊥
Γ ` x : 3cA

3cR
xRy , Γ ` y : A, x : 3cA,∆; ·

xRy , Γ ` x : 3cA,∆; · 3cR

Pure labEK
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The ecumenical future

I Real Ecumenical Mathematics!!! We know that if all operators have a
constructive “reading”, the axiom of choice is a theorem in Martin-Löf
Type Theory. But what would happen if we have hybrid readings of these
same operators?

I Applications in Computer Science!!!

I New ecumenical codifications. We have showned several ecumenical
systems for classical and intuitionistic logic. What about other logics?

I Barroso-Nascimento has an ecumenical system for intuitionistic and minimal
logic;

I Sernada and Rasga have an ecumenical system for intuitionistic logic and
classical S4;

I Rasga and Sernadas: how to systematically connect translations to
ecumenical systems and propose an ecumenical system for classical logic
and Jaskowski’s paraconsistent logic.

I Semantics!! Ongoing works with Victor Barroso-Nascimento, Luiz Carlos
Pereira and Marcelo Coniglio.

I etc!!!
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End of the talk

Obrigada!!!

Gracias!!!

Taing mhòr!!!

,
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